98%
921
2 minutes
20
The use of metal-organic frameworks (MOFs) for wastewater treatment in continuous operation is a major challenge. To address this, the present study demonstrates the eco-friendly and economic synthesis of Ca-MOF immobilized cellulose beads (Ca-MOF-CB) derived from paper waste. The synthesized Ca-MOF-CB were characterized using standard analytical techniques. Batch sorption studies were performed to check the effect of cellulose composition (wt%), Ca-MOF loading, contact time, and initial metal ion (Pb, Cd, and Cu) concentration. Ca-MOF-CB beads exhibited outstanding equilibrium sorption capacities for Pb, Cd, and Cu, with estimated values of 281.22 ± 7.8, 104.01 ± 10.58, and 114.21 ± 9.68 mg g, respectively. Different non-linear isotherms and kinetic models were applied which confirmed the spontaneous, endothermic reactions for the physisorption of Pb, Cd, and Cu. Based on the highest equilibrium sorption capacity for Pb ion, in-depth parametric column studies were conducted in an indigenously developed packed-bed column set-up. The effect of packed-bed height (10 and 20 cm), inlet flow rate (5 and 10 mL min), and inlet Pb ion concentration (200, 300, and 500 mg L) were studied. The breakthrough curves obtained at different operating conditions were fitted with the empirical models the bed depth service time (BDST), Yoon-Nelson, Thomas, and Yan to estimate the column design parameters. In order to determine the financial implications at large-scale industrial operations, an affordable synthesis cost of 1 kg of Ca-MOF-CB was estimated. Conclusively, the present study showed the feasibility of the developed Ca-MOF-CB for the continuous removal of metal ions at an industrial scale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215655 | PMC |
http://dx.doi.org/10.1039/d4ra02566k | DOI Listing |
Waste Manag Res
September 2025
School of Environmental Science and Engineering, Tongji University, Shanghai, PR China.
Waste three-way catalysts (TWCs) and waste LiCoO batteries represent critical environmental challenges due to hazardous components yet contain high-value resources, and their recycling has garnered widespread attention. We propose a novel 'waste-to-waste' synergistic recycling where spent LiCoO batteries reconstruct mineral phases of waste TWCs, enabling co-recovery of platinum group metals and Li/Co without traditional oxidants. However, the environmental performance of this process still requires further analysis.
View Article and Find Full Text PDFChembiochem
September 2025
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str. 5/2, 220084, Minsk, Belarus.
The terminal deoxynucleotidyl transferase is a unique polymerase that incorporates nucleotides at the 3'-terminus of single-stranded DNA primers in a template-independent manner. This biological function propels the development of numerous biomedical and bioengineering applications. However, the extensive use of TdT is constrained by its low expression levels in E.
View Article and Find Full Text PDFChemistry
September 2025
Department of Chemistry, Birla Institute of Technology and Science-Pilani, K K Birla Goa Campus, Zuarinagar, Goa, 403726, India.
This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.
Periprosthetic joint infection (PJI) represents a serious complication following joint arthroplasty, and it often results in implant failure, prolonged morbidity, and additional healthcare burdens. Current clinical strategies for PJI treatment face obstacles, including antibiotic resistance, high recurrence rate, and compromised bone repair. To address these challenges, a novel nanozyme-based coordination compound designated as W-GA-Van@Zn is developed.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Materials Science & Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
Memtransistors are active analog memory devices utilizing ionic memristive materials as channel layers. Since their introduction, the term "memtransistor" has widely been adopted for transistors exhibiting nonvolatile memory characteristics. Currently, memtransistor devices possessing both transistor on/off functionality and nonvolatile memory characteristics include ferroelectric field-effect transistors (FeFETs) and charge-trap flash (floating gate), yet ionic memtransistors have not matched their performance.
View Article and Find Full Text PDF