Structural superlubricity at the interface of penta-BN.

Phys Chem Chem Phys

State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two-dimensional (2D) materials have been widely used as lubricants due to their weak interlayer interaction and low shear resistance for interlayer sliding. Composed entirely of five-membered rings, penta-BN monolayer has excellent thermal and mechanical stability, higher hardness and a negative Poisson's ratio. In this work, we investigate the frictional properties at both the commensurate and incommensurate contacting interfaces of penta-BN by adopting the molecular dynamics (MD) simulation method. Our calculations demonstrate robust superlubricity at the incommensurate contacting interface of penta-BN. The ultra-low friction is explained by the potential energy surface (PES) fluctuations, interlayer binding energy and out-of-plane motion amplitude of the sliding layer. In addition, our calculations show that the anisotropy of friction at the commensurate contacting interface is more obvious compared with that at the incommensurate contacting interface. Finally, the influences of the size of the Moiré pattern, normal force, temperature and sliding velocity on the friction are examined. Our results show that 2D penta-BN is a promising solid lubricant, enriching the family of 2D lubrication materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp00619dDOI Listing

Publication Analysis

Top Keywords

incommensurate contacting
12
contacting interface
12
interface penta-bn
8
penta-bn
5
structural superlubricity
4
interface
4
superlubricity interface
4
penta-bn two-dimensional
4
two-dimensional materials
4
materials lubricants
4

Similar Publications

Toward Zero Static Friction at the Microscale.

Phys Rev Lett

December 2024

Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China.

Static friction, a ubiquitous physical phenomenon, plays a significant role in natural processes and industrial applications. Its influence is particularly notable in the field of controlled micromanipulation and precision manufacturing, where static friction often exceeds kinetic friction and leads to material damage and unpredictable behaviors. In this study, we report the first experimental observation of the elimination of static friction peak in sliding micrometer contacts of layered materials, achieved through a technique involving selective etching of the amorphous edges of single crystalline surfaces.

View Article and Find Full Text PDF

Structural superlubricity is a special frictionless contact in which two crystals are in incommensurate arrangement such that relative in-plane translation is associated with vanishing energy barrier crossing. So far, it has been realized in multilayer graphene and other van der Waals (2D crystals with hexagonal or triangular crystalline symmetries, leading to isotropic frictionless contacts. Directional structural superlubricity, to date unrealized in 2D systems, is possible when the reciprocal lattices of the two crystals coincide in one direction only.

View Article and Find Full Text PDF

The weak interlayer interaction and strong intralayer bonding in Van der Waals (vdW) layered materials give rise to ultralow friction at incommensurate contact interfaces, a phenomenon known as structural superlubricity. This phenomenon is complicated by the interplay between atomic degrees of freedom, twist angle, and normal force. In this Letter, we exploit naturally occurring cracks in vdW crystals and microfabrication techniques to qualitatively separate the contributions of edge, complete moiré tile, and incomplete moiré rim regions.

View Article and Find Full Text PDF

Understanding the interlayer interaction between 2D layered structures is critical for the construction of various micro- and nanoscale functional devices. However, both the normal and the tangential interlayer interactions between 2D layered materials have rarely been studied simultaneously. In this work, an immersion and lift-up method is proposed to wrap a layer of graphene flakes onto a plasma-pretreated atomic force microscopy (AFM) nanoprobe for the measurements of interaction forces by AFM.

View Article and Find Full Text PDF

Van der Waals heterostructures formed by stacked 2D materials show exceptional electronic, mechanical, and optical properties. Superlubricity, a condition where atomically flat, incommensurate planes of atoms result in ultra-low friction, is a prime example enabling, for example, self-assembly of optically visible graphene nanostructures in air via a sliding auto-kirigami process. Here, it is demonstrated that a subtle but ubiquitous adsorbate stripe structure found on graphene and graphitic surfaces in ambient conditions remains stable within the interface between twisted graphene layers as they slide over each other.

View Article and Find Full Text PDF