98%
921
2 minutes
20
Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 10 cycles and a data storage retention capability at 80 °C over 10 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197568 | PMC |
http://dx.doi.org/10.1016/j.fmre.2022.02.004 | DOI Listing |
ACS Nano
September 2025
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Ferroelectric tunnel junctions (FTJs) based on ferroelectric switching and quantum tunneling effects with thickness down to a few unit cells have been explored for applications of two-dimensional (2D) electronic devices in data storage and neural networks. As a key performance indicator, the enhanced tunneling electrosistance (TER) ratio provides a broader dynamic range for precise modulation of synaptic weights, improving the stability and accuracy of neural networks. Herein, we report an observation of pronounced enhancement in the TER ratio by over 4 orders of magnitude through the fabrication of large-scale heterostructures combining bismuth ferrite with two-dimensional Ruddlesden-Popper oxide BiFeO.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
Clinically, even in patients diagnosed with non-obstructive azoospermia, spermatogenesis may be present in some seminiferous tubules, which gives the patient hope of having biological offspring of his own. However, there is still a blank for high-precision detection technologies to support accurate diagnosis and effective treatment. In this work, we successfully developed a minimally invasive fine needle detection memristive device that features a structure composed of Ag/CH-MnO/FTO by utilizes the organic-inorganic heterojunction as functional layer.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Electronic Information & Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, China.
The integration of information memory and computing enabled by nonvolatile memristive device has been widely acknowledged as a critical solution to circumvent the von Neumann architecture limitations. Herein, the Au/NiO/CaBiTiO/FTO (CBTi/NiO) heterojunction based memristor with varying film thicknesses are demonstrated on FTO/glass substrates, and the CBTi/NiO-4 sample shows the optimal memristor characteristics with 5 × 10 stable switching cycles and 10-s resistance state retention. The electrical conduction in the low-resistance state is dominated by Ohmic behavior, while the high-resistance state exhibited characteristics consistent with the space-charge-limited conduction (SCLC) model.
View Article and Find Full Text PDFAdv Mater
September 2025
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
Neuromorphic computing presents a promising solution for the von Neumann bottleneck, enabling energy-efficient and intelligent sensing platforms. Although 2D materials are ideal for bioinspired neuromorphic devices, achieving multifunctional synaptic operations with simple configurations and linear weight updates remains challenging. Inspired by biological axons, the in-plane anisotropy of 2D NbGeTe is exploited to develop dual electronic-optical synaptic devices.
View Article and Find Full Text PDFSmall
September 2025
Hybrid Materials Center (HMC), Sejong University, Seoul, 05006, Republic of Korea.
2D chalcogenide-based memristors have the potential to be used in artificial biological visual systems since their synaptic behavior can be optically and electrically modulated. Furthermore, 2D van der Waals materials such as SnS can be used to integrate multifunctional optoelectronic devices by employing a rational design. Here, the simulation of a human biological visual system is reported by using multifunctional optoelectronic synaptic devices.
View Article and Find Full Text PDF