Publications by authors named "Tianle Zeng"

Neuromorphic computing presents a promising solution for the von Neumann bottleneck, enabling energy-efficient and intelligent sensing platforms. Although 2D materials are ideal for bioinspired neuromorphic devices, achieving multifunctional synaptic operations with simple configurations and linear weight updates remains challenging. Inspired by biological axons, the in-plane anisotropy of 2D NbGeTe is exploited to develop dual electronic-optical synaptic devices.

View Article and Find Full Text PDF

2D van der Waals heterostructure-based artificial synapses have emerged as a compelling platform for next-generation neuromorphic systems, owing to their tunable electrical conductivity and layer-engineered functionality through controlled stacking of 2D materials. In this work, an engineered SnS₂/h-BN/CuCrP₂S₆ van der Waals antiferroelectric field-effect transistor (AFe-FET) is presented that implements synaptic weight modulation through the synergistic interplay of charge trapping dynamics and electric-field-controlled ferroelectric polarization switching. The AFe-FET architecture successfully emulates essential neuroplasticity features, including paired-pulse facilitation, short-term plasticity, and long-term plasticity.

View Article and Find Full Text PDF