98%
921
2 minutes
20
Stretchable electrodes based on liquid metals (LM) are widely used in human-machine interfacing, wearable bioelectronics, and other emerging technologies. However, realizing the high-precision patterning and mechanical stability remains challenging due to the poor wettability of LM. Herein, a method is reported to fabricate LM-based multilayer solid-liquid electrodes (m-SLE) utilizing electrohydrodynamic (EHD) printed confinement template. In these electrodes, LM self-assembled onto these high-resolution templates, assisted by selective wetting on the electrodeposited Cu layer. This study shows that a m-SLE composed of PDMS/Ag/Cu/EGaIn exhibits line width of ≈20 µm, stretchability of ≈100%, mechanical stability ≈10 000 times (stretch/relaxation cycles), and recyclability. The multi-layer structure of m-SLE enables the adjustability of strain sensing, in which the strain-sensitive Ag part can be used for non-distributed detection in human health monitoring and the strain-insensitive EGaIn part can be used as interconnects. In addition, this study demonstrates that near field communication (NFC) devices and multilayer displays integrated by m-SLEs exhibit stable wireless signal transmission capability and stretchability, suggesting its applicability in creating highly-integrated, large-scale commercial, and recyclable wearable electronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425843 | PMC |
http://dx.doi.org/10.1002/advs.202402818 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
Gel-based electronic skin (e-skin) has recently emerged as one of the most promising interfaces for human-machine interaction and wearable devices, owing to its exceptional flexibility, extensibility, transparency, biocompatibility, high-quality physiological signal monitoring, and system integration suitability. However, conventional hydrogel-based e-skins may exhibit limitations in mechanical strength and stretchability compatibility, as well as poor environmental stability. To address these challenges, following a top-down fabrication strategy, this study innovatively integrates poly(methacrylic acid), titanium sulfate, and ethylene glycol (EG) into the three-dimensional collagen fiber network structure of zeolite-tanned sheepskin to successfully develop an organogel (SMEMT) e-skin, which exhibits superior high toughness, environmental stability, high transparency (74% light transmittance at 550 nm), antibacterial properties and ecological compatibility.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.
View Article and Find Full Text PDFAnal Chem
September 2025
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China.
Depression is linked to dysregulated neurotransmitter levels, making efficient and facile monitoring crucial for early diagnosis and improved treatment outcomes. However, rigid electrodes or unstable luminescence on flexible substrates have limited the adoption of electrochemiluminescence (ECL) in flexible health-monitoring platforms. Herein, we introduce a stretchable conductive photonic-crystal hydrogel (PCH) as an ECL electrode for sweat-based neurotransmitter detection.
View Article and Find Full Text PDFACS Appl Energy Mater
August 2025
Department of Electrical and Computer Engineering, Kennesaw State University, Marietta, Georgia 30060, United States.
Ceramic-in-polymer composite solid electrolytes (SEs) show great potential for meeting the high-performance requirements of all-solid-state batteries (ASSBs) due to the combined benefits of easy processability, tunable Li-ion conductivity, wide electrochemical window, and facile interfacial contact with the Li-metal anode. However, their Li-ion conductivity remains lower than that of the pure ceramic phase, which can be attributed to the highly resistive ceramic/polymer interphase. In this paper, we introduced sulfur-containing functional groups through a less-explored metal/sulfur interaction strategy, enabling simultaneous modification of the polyethylene glycol diacrylate (PEGDA) polymer scaffold and the LiLaZrTaO (LLZO) ceramic surface.
View Article and Find Full Text PDFSensors (Basel)
August 2025
Adaptive Structures Department, The Italian Aerospace Research Centre (CIRA), 81043 Capua, Italy.
In this paper, a strain-temperature sensor with medium-high stretchability is proposed for aeronautic applications. The elastomer is conceived to be used as a protective cover on a morphing airfoil characterized by high curvatures. The main novelties in design and manufacturing compared to the state of the art are: use of a non-commercial, low-viscosity PDMS crosslinked with TEOS and DBTDL to enable effective graphene dispersion; innovative sensor design featuring an insulating interlayer on the substrate; and presence of micro-voids to enhance adhesion to the substrate.
View Article and Find Full Text PDF