Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This research investigated the relationship between volume energy density and the microstructure, density, and mechanical properties of the Ti-5Al-5Mo-3V-1Cr-1Fe alloy fabricated via the SLM process. The results indicate that an increase in volume energy density can promote a transition from a columnar to an equiaxed grain structure and suppress the anisotropy of mechanical properties. Specifically, at a volume energy density of 83.33 J/mm, the average aspect ratio of β grains reached 0.77, accompanied by the formation of numerous nano-precipitated phases. Furthermore, the relative density of the alloy initially increased and then decreased as the volume energy density increased. At a volume energy density of 83.33 J/mm, the relative density reached 99.6%. It is noteworthy that an increase in volume energy density increases the β grain size. Consequently, with a volume energy density of 83.33 J/mm, the alloy exhibited an average grain size of 63.92 μm, demonstrating optimal performance with a yield strength of 1003.06 MPa and an elongation of 18.16%. This is mainly attributable to the fact that an increase in volume energy density enhances thermal convection within the molten pool, leading to alterations in molten pool morphology and a reduction in temperature gradients within the alloy. The reduction in temperature gradients promotes equiaxed grain transformation and grain refinement by increasing constitutive supercooling at the leading edge of the solid-liquid interface. The evolution of molten pool morphology mainly inhibits columnar grain growth and refines grain by changing the grain growth direction. This study provided a straightforward method for inhibiting anisotropy and enhancing mechanical properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173926PMC
http://dx.doi.org/10.3390/ma17112631DOI Listing

Publication Analysis

Top Keywords

volume energy
36
energy density
36
mechanical properties
16
density
12
increase volume
12
density 8333
12
8333 j/mm
12
molten pool
12
volume
9
energy
9

Similar Publications

Rapid sand filtration is typically used at water treatment plants to remove the fine suspended solid particles from the raw water. Backwashing of exhausted filter beds inevitably generates large volume of filtration sludge in water treatment plants. In this study, filtration sludge is collected, dried and crushed to powder, then passed through 90 µm sieve to get powdered filtration sludge (PFS) which is then characterized and utilized without energy intensive process of calcination.

View Article and Find Full Text PDF

Introduction: To evaluate how stepwise enlargement in the mesial root canals of mandibular first molars affect shaping outcomes and irrigant dynamics.

Methods: The shaping ability and irrigant flow patterns in mesial canals of mandibular first molars enlarged with ProTaper Next instruments (25/.06v, 30/.

View Article and Find Full Text PDF

Axonal degeneration in hemorrhagic stroke: a systematic review.

Pharmacol Res

September 2025

University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, Vienna, Austria. Electronic address:

Hemorrhagic stroke occurs due to a rupture of a blood vessel in the brain. This leads to initial mechanical damage at the site of injury and secondary injuries including axonal degeneration (AxD). Since axons are critical for all brain functions, we systematically reviewed studies that focused on axonal degeneration in two major types of hemorrhagic stroke, intracerebral hemorrhage and subarachnoid hemorrhage, to understand how and to what extent AxD develops and to interrogate underlying mechanisms and potential therapeutic targets.

View Article and Find Full Text PDF

Edge computing-based FPGA real-time material decomposition system for photon counting CT.

Comput Methods Programs Biomed

September 2025

Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, 210096, China; Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096, China. Electronic address: xuji@s

Background: Photon counting computed tomography (PCCT) has emerged as a potential technology that is revolutionizing clinical CT imaging. Using photon counting detectors (PCDs), the PCCT counts each X-ray event and measures the corresponding energy above the noise floor with significantly higher spatial resolution. However, the multiple-energy-bin setting and much smaller pixels increase the raw data size of PCCT by 20-100 times compared to traditional CT.

View Article and Find Full Text PDF

This study investigated the pyrolysis of mixed medical waste (MMW) in an indirectly heated rotary kiln, focusing on the effects of operating parameters (filling ratio, heat source temperature, and rotation speed) on the heat transfer performance and product distribution. The pyrolysis behaviors of individual components (cotton swabs, paper, bandages, and plastics) and their composite mixtures were characterized using thermogravimetric-differential thermal analysis (TG-DTA). The heat transfer characteristics, chemical reaction properties, kiln operating parameters, and interactions between the processes were also investigated.

View Article and Find Full Text PDF