Publications by authors named "Marietta Zille"

Stroke is a disease of the central nervous system that leads to high rates of morbidity and mortality, along with limited treatment options. This condition is frequently linked to pathologic alterations at the ultrastructural level within diverse neuronal components, including cell bodies, neurites, and synapses, as well as in glial cells like astrocytes, microglia, and oligodendrocytes. These changes include alterations in the shape and size of cell bodies, disruption of neurites, and changes in the density and distribution of synapses.

View Article and Find Full Text PDF

Subretinal hemorrhage (SRH) is caused by the accumulation of blood between the neurosensory retina and the retinal pigment epithelium or between the retinal pigment epithelium and the choroid. SRH often arises from age-related macular degeneration, traumas, and may occur spontaneously caused by other diseases like hypertension and diabetes. Here, we developed a novel technique - co-injection of blood and a dye-coupled tracer protein, Cholera toxin subunit B (CtB) - to better localize and understand the disease and how it can cause microglial activation, inflammation, and partial vision loss.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) presents significant risks concerning mortality and morbidity. Individuals who suffer from TBI may exhibit mood disorders, including anxiety and depression. Both preclinical and clinical research have established correlations between TBI and disturbances in the metabolism of amino acids, lipids, iron, zinc, and copper, which are implicated in the emergence of mood disorders post-TBI.

View Article and Find Full Text PDF

The impact of stroke on global health is profound, with both high mortality and morbidity rates. This condition can result from cerebral ischemia, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). The pathophysiology of stroke involves secondary damage and irreversible loss of neuronal function.

View Article and Find Full Text PDF

Aims: Intracerebral hemorrhage (ICH) is a condition that arises due to the rupture of cerebral blood vessels, leading to the flow of blood into the brain tissue. One of the pathological alterations that occurs during an acute ICH is an impairment of the blood-brain barrier (BBB), which leads to severe perihematomal edema and an immune response.

Discussion: A complex interplay between the cells of the BBB, for example, pericytes, astrocytes, and brain endothelial cells, with resident and infiltrating immune cells, such as microglia, monocytes, neutrophils, T lymphocytes, and others accounts for both damaging and protective mechanisms at the BBB following ICH.

View Article and Find Full Text PDF
Article Synopsis
  • The global rise in aging populations is linked to a higher incidence of Alzheimer's disease (AD) and its socioeconomic impacts, driven largely by abnormal amyloid-β (Aβ) metabolism.
  • Current treatments focusing on Aβ removal have shown limited cognitive benefits, highlighting the complexity of AD's causes, which include a range of factors like tau accumulation, neuroinflammation, and vascular dysfunction.
  • To effectively treat AD, extensive research is needed on neurodegeneration mechanisms, identifying intervention targets, and developing combinatorial treatment strategies, with the overarching goal of reversing cognitive decline through the Alzheimer's Disease Neuroprotection Research Initiative.
View Article and Find Full Text PDF

Acquired brain injuries, such as ischemic stroke, intracerebral hemorrhage (ICH), and traumatic brain injury (TBI), can cause severe neurologic damage and even death. Unfortunately, currently, there are no effective and safe treatments to reduce the high disability and mortality rates associated with these brain injuries. However, environmental enrichment (EE) is an emerging approach to treating and rehabilitating acquired brain injuries by promoting motor, sensory, and social stimulation.

View Article and Find Full Text PDF

Humans rely on vision as their most important sense. This is accomplished by photoreceptors (PRs) in the retina that detect light but cannot function without the support and maintenance of the retinal pigment epithelium (RPE). In subretinal hemorrhage (SRH), blood accumulates between the neurosensory retina and the RPE or between the RPE and the choroid.

View Article and Find Full Text PDF

Autofluorescence is frequently observed in animal tissues, interfering with an experimental analysis and leading to inaccurate results. Sudan black B (SBB) is a staining dye widely used in histological studies to eliminate autofluorescence. In this study, our objective was to characterize brain tissue autofluorescence present in three models of acute brain injury, including collagenase-induced intracerebral hemorrhage (ICH), traumatic brain injury (TBI), and middle cerebral artery occlusion, and to establish a simple method to block autofluorescence effectively.

View Article and Find Full Text PDF

Stroke is a severe and life-threatening disease, necessitating more research on new treatment strategies. Infiltrated T lymphocytes, an essential adaptive immune cell with extensive effector function, are crucially involved in post-stroke inflammation. Immediately after the initiation of the innate immune response triggered by microglia/macrophages, the adaptive immune response associated with T lymphocytes also participates in the complex pathophysiology of stroke and partially informs the outcome of stroke.

View Article and Find Full Text PDF

Neural stem cell (NSC) transplantation is an emerging and promising approach to combat neurodegenerative diseases. While NSCs can differentiate into neural cell types, many therapeutic effects are mediated by paracrine, "drug-like" mechanisms. Neurodegenerative diseases are predominantly a burden of the elderly who commonly suffer from comorbidities and thus are subject to pharmacotherapies.

View Article and Find Full Text PDF

Intracerebral haemorrhage (ICH) is the second most common type of stroke and a major cause of mortality and disability worldwide. Despite advances in surgical interventions and acute ICH management, there is currently no effective therapy to improve functional outcomes in patients. Recently, there has been tremendous progress uncovering new pathophysiological mechanisms underlying ICH that may pave the way for the development of therapeutic interventions.

View Article and Find Full Text PDF

Ferroptosis is a caspase-independent, iron-dependent form of regulated necrosis extant in traumatic brain injury, Huntington disease, and hemorrhagic stroke. It can be activated by cystine deprivation leading to glutathione depletion, the insufficiency of the antioxidant glutathione peroxidase-4, and the hemolysis products hemoglobin and hemin. A cardinal feature of ferroptosis is extracellular signal-regulated kinase (ERK)1/2 activation culminating in its translocation to the nucleus.

View Article and Find Full Text PDF

Axonal degeneration (AxD) is a pathological hallmark of many neurodegenerative diseases. Deciphering the morphological patterns of AxD will help to understand the underlying mechanisms and develop effective therapies. Here, we evaluated the progression of AxD in cortical neurons using a novel microfluidic device together with a deep learning tool that we developed for the enhanced-throughput analysis of AxD on microscopic images.

View Article and Find Full Text PDF
Article Synopsis
  • Fucoidans are polysaccharides from brown seaweeds that may help protect against oxidative stress, particularly ferroptosis, linked to retinal and brain diseases.
  • The study evaluated various fucoidan extracts' effectiveness in reducing cell death in specific retinal and neuronal cell lines, finding limited protective effects.
  • Results suggest that the antioxidant properties of fucoidans vary by cell type and extraction methods, signaling a need for further research to understand their potential health benefits and mechanisms.
View Article and Find Full Text PDF
Article Synopsis
  • - COVID-19 can harm small blood vessels in the brain, leading to various neurological symptoms and structural changes in patients.
  • - Researchers found that SARS-CoV-2 infection leads to empty basement membrane tubes, known as string vessels, indicating capillary loss, and that the virus infects brain endothelial cells.
  • - The study proposes that targeting RIPK, a key molecule involved in cell death, could be a new treatment strategy to combat the brain damage associated with COVID-19.
View Article and Find Full Text PDF

We rely on vision more than on any other sense to obtain information about our environment. Hence, the loss or even impairment of vision profoundly affects our quality of life. Diet or food components have already demonstrated beneficial effects on the development of retinal diseases.

View Article and Find Full Text PDF

The past decade has brought tremendous progress in diagnostic and therapeutic options for cerebrovascular diseases as exemplified by the advent of thrombectomy in ischemic stroke, benefitting a steeply increasing number of stroke patients and potentially paving the way for a renaissance of neuroprotectants. Progress in basic science has been equally impressive. Based on a deeper understanding of pathomechanisms underlying cerebrovascular diseases, new therapeutic targets have been identified and novel treatment strategies such as pre- and post-conditioning methods were developed.

View Article and Find Full Text PDF

The original version of the article unfortunately contained an error in the unit of the protein concentrations under 'Stereotactic Intraparenchymal Injections' subsection in 'Methods' section.

View Article and Find Full Text PDF

Pigment epithelium-derived factor (PEDF) is a neurotrophic factor with neuroprotective, antiangiogenic, and antipermeability effects. In the brain, blood-brain barrier (BBB) function is essential for homeostasis. Its impairment plays a crucial role in the pathophysiology of many neurological diseases, including ischemic stroke.

View Article and Find Full Text PDF