Publications by authors named "Qinfeng Peng"

Intracerebral hemorrhage (ICH) is a prevalent disease with high mortality. Despite advances in clinical care, the prognosis of ICH remains poor due to an incomplete understanding of the complex pathological processes. To address this challenge, we generated single-cell-resolution spatiotemporal transcriptomic maps of the mouse brain following ICH.

View Article and Find Full Text PDF

Rationale: The utilization of anti-inflammatory therapy for treating brain diseases holds promise; however, research on intranasal administration of drug compounds remains limited. Quantitative data, particularly pharmacokinetics, are scant, and direct evidence of the distribution of intranasally administered recombinant interleukin 10 (rIL-10) within the brain is lacking.

Methods: Employing fluorescent labeling, in vivo imaging, and confocal microscopy, we meticulously monitored the distribution and delivery pathways of intranasally administered rIL-10 in the brain.

View Article and Find Full Text PDF

Central Nervous System (CNS) diseases significantly affect human health. However, replicating the onset, progression, and pathology of these diseases in rodents is challenging. To address this issue, researchers have developed humanized animal models.

View Article and Find Full Text PDF

Metal ions play a pivotal role in maintaining optimal brain function within the human body. Nevertheless, the accumulation of these ions can result in irregularities that lead to brain damage and dysfunction. Disruptions of metal ion homeostasis can result in various pathologies, including inflammation, redox dysregulation, and blood-brain barrier disruption.

View Article and Find Full Text PDF

Aims: Intracerebral hemorrhage (ICH) is a condition that arises due to the rupture of cerebral blood vessels, leading to the flow of blood into the brain tissue. One of the pathological alterations that occurs during an acute ICH is an impairment of the blood-brain barrier (BBB), which leads to severe perihematomal edema and an immune response.

Discussion: A complex interplay between the cells of the BBB, for example, pericytes, astrocytes, and brain endothelial cells, with resident and infiltrating immune cells, such as microglia, monocytes, neutrophils, T lymphocytes, and others accounts for both damaging and protective mechanisms at the BBB following ICH.

View Article and Find Full Text PDF

Autofluorescence is frequently observed in animal tissues, interfering with an experimental analysis and leading to inaccurate results. Sudan black B (SBB) is a staining dye widely used in histological studies to eliminate autofluorescence. In this study, our objective was to characterize brain tissue autofluorescence present in three models of acute brain injury, including collagenase-induced intracerebral hemorrhage (ICH), traumatic brain injury (TBI), and middle cerebral artery occlusion, and to establish a simple method to block autofluorescence effectively.

View Article and Find Full Text PDF