Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The microenvironment mediated by the microglia (MG) M1/M2 phenotypic switch plays a decisive role in the neuronal fate and cognitive function of Alzheimer's disease (AD). However, the impact of metabolic reprogramming on microglial polarization and its underlying mechanism remains elusive. This study reveals that cordycepin improved cognitive function and memory in APP/PS1 mice, as well as attenuated neuronal damage by triggering MG-M2 polarization and metabolic reprogramming characterized by increased OXPHOS and glycolysis, rather than directly protecting neurons. Simultaneously, cordycepin partially alleviates mitochondrial damage in microglia induced by inhibitors of OXPHOS and glycolysis, further promoting MG-M2 transformation and increasing neuronal survival. Through confirmation of cordycepin distribution in the microglial mitochondria via mitochondrial isolation followed by HPLC-MS/MS techniques, HKII and PDK2 are further identified as potential targets of cordycepin. By investigating the effects of HKII and PDK2 inhibitors, the mechanism through which cordycepin targeted HKII to elevate ECAR levels in the glycolysis pathway while targeting PDK2 to enhance OCR levels in PDH-mediated OXPHOS pathway, thereby inducing MG-M2 polarization, promoting neuronal survival and exerting an anti-AD role is elucidated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336950PMC
http://dx.doi.org/10.1002/advs.202304687DOI Listing

Publication Analysis

Top Keywords

metabolic reprogramming
12
hkii pdk2
12
microglial polarization
8
cognitive function
8
mg-m2 polarization
8
oxphos glycolysis
8
neuronal survival
8
cordycepin
6
cordycepin modulates
4
modulates microglial
4

Similar Publications

Autoimmune diseases (AIDs) constitute a group of disorders where the immune system mistakenly attacks the body's tissues. The pathogenesis of AIDs involve a breakdown in immune tolerance, culminating in an immune response that targets autoantigens. In adaptive immunity, secondary rearrangement of T cell receptors (TCRs) and B cell receptors (BCRs) involves sequential V(D)J recombination events during lymphocyte development.

View Article and Find Full Text PDF

KRAS mutations in Non-Small Cell Lung Cancer: translational aspects, current therapies and challenges for future research.

Crit Rev Oncol Hematol

September 2025

Unit of Cancer Genetics, Institute of Genetic & Biomedical Research (IRGB), National Research Council (CNR), Traversa La Crucca n. 3, 07100, Sassari, Italy; Immuno-Oncology & Targeted Cancer Biotherapies, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy. Electronic address: gpalmier

Mutations in the KRAS gene are prominent oncogenic drivers in non-small cell lung cancer (NSCLC), with multiple pathophysiological, clinical and prognostic implications. Although historically considered an "undruggable" target, recent research led to the development of specific KRAS-G12C inhibitors, like sotorasib and adagrasib which are currently approved for clinical use in patients affected by advanced NSCLC. However, the clinical utility of these drugs is often limited by resistance development through several biological mechanisms, including additional KRAS mutations, activation of compensatory pathways and metabolic reprogramming.

View Article and Find Full Text PDF

Cancer is a complex and heterogeneous disease characterized by the accumulation of genetic and epigenetic alterations that drive uncontrolled cellular proliferation and survival. This review provides a comprehensive overview of key cancer driver genes, including oncogenes such as KRAS and PIK3CA, as well as tumor suppressor genes like TP53, PTEN, and CDKN2A, highlighting their molecular mechanisms and roles across various types of cancer. Leveraging insights from large-scale cancer genome initiatives and whole-genome sequencing, we examine the landscape of somatic mutations and their association with hallmark cancer pathways, including cell cycle regulation, apoptosis, metabolic reprogramming, and immune evasion.

View Article and Find Full Text PDF

Ortho-bridge system for the treatment of Vancouver type B1 periprosthetic femoral fractures based on three dimensional printing.

Int Orthop

September 2025

Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China.

Objective: This study aims to evaluate the clinical outcomes of Vancouver B1 periprosthetic femoral fractures (PFF) treated with the Ortho-bridge system (OBS) internal fixation and assess the potential benefits of 3D printing technology in preoperative planning and surgical execution for these cases.

Method: This retrospective study analyzed 55 consecutive Vancouver B1 periprosthetic femoral fracture cases treated surgically at Yan'an Affiliated Hospital of Kunming Medical University (2014-2022) with minimum 1-year follow-up. Patients were divided into conventional ORIF (n = 21) and OBS fixation groups (n = 34), with the OBS group further stratified into standard procedure (n = 18) and 3D-printing-assisted (n = 16) subgroups.

View Article and Find Full Text PDF

Mutualistic endosymbiosis is a cornerstone of evolutionary innovation, enabling organisms to exploit diverse niches unavailable to individual species. However, our knowledge about the early evolutionary stage of this relationship remains limited. The association between the ciliate Tetrahymena utriculariae and its algal endosymbiont Micractinium tetrahymenae indicates an incipient stage of photoendosymbiosis.

View Article and Find Full Text PDF