98%
921
2 minutes
20
Despite the safety profile of subunit vaccines, the inferior immunogenicity hinders their application in the nasal cavity. This study introduces a novel antigen delivery and adjuvant system utilizing mucoadhesive chitosan-catechol (Chic) on silica spiky nanoparticles (Ssp) to enhance immunity through multiple mechanisms. The Chic functionalizes the Ssp surface and incorporates with SARS-CoV-2 spike protein receptor-binding domain (RBD) and toll-like receptor (TLR)9 agonist unmethylated cytosine-guanine (CpG) motif, forming uniform virus-like nanoparticles (Ssp-Chic-RBD-CpG) via electrostatic and covalent interactions. Ssp-Chic-RBD-CpG, mimicking the morphology and function of inactive virions, effectively prolongs the retention time of RBD in the nasal mucosa by 3.92-fold compared to RBD alone, enhances the maturation of dendritic cells (DCs), and facilitates the antigen trafficking to the draining lymph nodes, which subsequently induces a stronger mucosal immunity. Mechanistically, the enhanced chemokine chemokine (C-C motif) ligand 20 (CCL20)-driven DCs recruitment and maturation by Ssp-Chic-RBD-CpG are evidenced by a cell co-culture model. In addition, the overexpression of TLR4/9 and activation of MYD88/NF-κB signaling pathway in activation of DCs are observed. Proof of principle is obtained for RBD, but similar delivery mechanisms can be applied in other protein-based subunit vaccines as well when intranasal administration is needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202401120 | DOI Listing |
Infect Immun
September 2025
National Contagious Bovine Pleuropneumonia Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Contagious bovine pleuropneumonia (CBPP), caused by subsp. (Mmm), is a devastating cattle disease with high morbidity and mortality, threatening cattle productivity in Sub-Saharan Africa and potentially in parts of Asia. Cross-border livestock trade increases the risk of CBPP introduction or reintroduction.
View Article and Find Full Text PDFCrit Rev Ther Drug Carrier Syst
September 2025
The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.
View Article and Find Full Text PDFMacromol Biosci
September 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Clinical Oncology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
Background: Neoantigen-based vaccines show promising therapeutic potential in solid tumors such as melanoma, GBM, NSCLC, and CRC. However, clinical responses remain suboptimal in stage IV patients, due to ineffective T-cell function and high tumor burdens. To overcome these limitations, our study investigates a combination strategy using neoantigen peptide vaccines and precision critical lesion radiotherapy (CLERT), which delivers immunomodulatory doses to key tumor regions synergistically enhance immune activation and inhibit progression in multifocal stage IV patients.
View Article and Find Full Text PDFVet Res Commun
September 2025
Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
Background: Canine parvovirus (CPV) poses a severe threat to canine health, necessitating the development of safer and more effective vaccines. While traditional vaccines carry risks of virulence reversion and environmental contamination, subunit vaccines-especially neutralizing epitope vaccines-offer promising alternatives by eliciting targeted immune responses with enhanced safety.
Methods: We employed bacterial display technology to express 11 overlapping CPV VP2 gene fragments on the periplasmic membrane of E.