98%
921
2 minutes
20
Nitrogen (N) and phosphorus (P) fertilizers change the morphological structure and effectiveness of P in the soil, which in turn affects crop growth, yield, and quality. However, the effects and mechanism of combined N and P application on the content of P fractions and the transformation of effective forms in alfalfa ( L.) production is unclear. This experiment was conducted with four levels of N: 0 (N), 60 (N), 120 (N) and 180 kg·ha (N); and two levels of P (PO): 0 (P) and 100 kg·ha (P). The results indicated that, under the same N level, P application significantly increased soil total N, and total P, available P, and content of various forms of inorganic P when compared to no P application, while decreasing the content of various forms of organic P and pH value. In general, under P conditions, soil total N content tended to increase with increasing N application, while total P, available P content, pH, inorganic P content in all forms, and organic P content in all forms showed a decreasing trend. When compared to no N application, insoluble P (Fe-P, O-P, Ca-P) of the N application treatments was reduced 2.80 - 22.72, 2.96 - 20.42, and 5.54 - 20.11%, respectively. Under P conditions, soil total N and O-P tended to increase with increasing N application, while, pH, Ca-P, Al-P, Fe-P, Ca-P, and organic P content of each form tended to decrease. Total P, available P, and labile organic P (LOP) of N application reduced 0.34 - 8.58, 4.76 - 19.38, and 6.27 - 14.93%, respectively, when compared to no application. Nitrogen fertilization reduced the soil Ca-P ratio, while P fertilization reduced soil Fe-P, moderately resistant organic P (MROP), and highly resistant P (HROP) ratios, and combined N and P elevated the Ca-P to LOP ratio. The results of redundancy analysis showed that soil total N content, available P content, and pH were the key factors affecting the conversion of P fractions in the soil. Nitrogen and P reduced the proportion of soil insoluble P, promoted the activation of soil organic P, resulting in accumulation of slow-acting P in the soil, thereby improving the efficiency of soil P in alfalfa production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165086 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1380738 | DOI Listing |
Oecologia
September 2025
School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
Stomatal closure is a pervasive response among trees exposed to flooded soil. We tested whether this response is caused by reduced hydraulic conductance in the soil-to-leaf hydraulic continuum (k), and particularly by reduced root hydraulic conductance (k), which has been widely hypothesized. We tracked stomatal conductance at the leaf level (g) and canopy scale (G) along with physiological conditions in two temperate tree species, Magnolia grandiflora and Quercus virginiana, that were subjected to flood and control conditions in a greenhouse experiment.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2025
National Biopesticide Engineering Technology Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, P. R. China.
We presented the complete genome of NBTC-002 isolated from soil samples from ecological ditches on farmland, of which the total length is 3,799,862 bp and possesses 3,817 protein-coding sequences (CDS).
View Article and Find Full Text PDFEnviron Sci Process Impacts
September 2025
Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, Nebraska 68588-6204, USA.
Rice is consumed by ∼50% of the global population, grown primarily in flooded paddy fields, and is susceptible to arsenic accumulation. Inorganic arsenic, particularly in reduced form (As(III)), is considered the most toxic and is more likely to accumulate in rice grains under flooded systems. We postulate that increased levels of highly reactive iron minerals, such as ferrihydrite, in paddy soils can regulate the bioavailability of arsenic and reduce its uptake by priming iron plaque formation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Faculty of Environment and Resource Studies, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
Soil washing with surfactants is a promising technique for remediating petroleum hydrocarbon-contaminated soils. This study evaluates a biosurfactant extracted from Eichhornia crassipes (water hyacinth), an abundant aquatic weed in Thailand, using ultrasound-assisted extraction for diesel-contaminated soil remediation. The biosurfactant extract (Extract WH) was characterized for its surface tension reduction, critical micelle concentration (CMC), emulsification capacity with diesel, and phytotoxicity.
View Article and Find Full Text PDFEnviron Res
September 2025
National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address: cmm114@mail
Black soldier fly (BSF) organic fertilizer is known to enhance soil fertility and promote plant growth. However, its effects on soil carbon (C) and nitrogen (N) cycling remains unclear. In this study, we established a BSF chicken manure bioconversion system to produce BSF organic fertilizer and investigate its impacts on soil C and N cycling, as well as microbial ecological networks through metagenomic analysis.
View Article and Find Full Text PDF