98%
921
2 minutes
20
Objective: To develop a nomogram based on tumor and peritumoral edema (PE) radiomics features extracted from preoperative multiparameter MRI for predicting brain invasion (BI) in atypical meningioma (AM).
Methods: In this retrospective study, according to the 2021 WHO classification criteria, a total of 469 patients with pathologically confirmed AM from three medical centres were enrolled and divided into training (n = 273), internal validation (n = 117) and external validation (n = 79) cohorts. BI was diagnosed based on the histopathological examination. Preoperative contrast-enhanced T1-weighted MR images (T1C) and T2-weighted MR images (T2) for extracting meningioma features and T2-fluid attenuated inversion recovery (FLAIR) sequences for extracting meningioma and PE features were obtained. The multiple logistic regression was applied to develop separate multiparameter radiomics models for comparison. A nomogram was developed by combining radiomics features and clinical risk factors, and the clinical usefulness of the nomogram was verified using decision curve analysis.
Results: Among the clinical factors, PE volume and PE/tumor volume ratio are the risk of BI in AM. The combined nomogram based on multiparameter MRI radiomics features of meningioma and PE and clinical indicators achieved the best performance in predicting BI in AM, with area under the curve values of 0.862 (95% CI, 0.819-0.905) in the training cohort, 0.834 (95% CI, 0.780-0.908) in the internal validation cohort and 0.867 (95% CI, 0.785-0.950) in the external validation cohort, respectively.
Conclusions: The nomogram based on tumor and PE radiomics features extracted from preoperative multiparameter MRI and clinical factors can predict the risk of BI in patients with AM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154967 | PMC |
http://dx.doi.org/10.1186/s12880-024-01294-5 | DOI Listing |
J Neurooncol
September 2025
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.
Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.
Abdom Radiol (NY)
September 2025
Department of Radiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
Background: We aimed to develop and validate a radiomics-based machine learning nomogram using multiparametric magnetic resonance imaging to preoperatively predict substantial lymphovascular space invasion in patients with endometrial cancer.
Methods: This retrospective dual-center study included patients with histologically confirmed endometrial cancer who underwent preoperative magnetic resonance imaging (MRI). The patients were divided into training and test sets.
Eur Radiol
September 2025
Quantitative Imaging Biomarkers in Medicine, Quibim, Valencia, Spain.
Objectives: In non-small cell lung cancer (NSCLC), non-invasive alternatives to biopsy-dependent driver mutation analysis are needed. We reviewed the effectiveness of radiomics alone or with clinical data and assessed the performance of artificial intelligence (AI) models in predicting oncogene mutation status.
Materials And Methods: A PRISMA-compliant literature review for studies predicting oncogene mutation status in NSCLC patients using radiomics was conducted by a multidisciplinary team.
Radiother Oncol
September 2025
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA. Electronic address:
Purpose: To predict metastasis-free survival (MFS) for patients with prostate adenocarcinoma (PCa) treated with androgen deprivation therapy (ADT) and external radiotherapy using clinical factors and radiomics extracted from primary tumor and node volumes in pre-treatment PSMA PET/CT scans.
Materials/methods: Our cohort includes 134 PCa patients (nodal involvement in 28 patients). Gross tumor volumes of primary tumor (GTVp) and nodes (GTVn) on CT and PET scans were segmented.
Radiother Oncol
September 2025
Department of Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, China. Electronic address:
Background: Accurate delineation of regions of interest (ROIs) is critical for feature extraction and selection in radiomics-based prediction models.
Purpose: To develop a combined dosiomics and deep learning (DL) model for predicting grade ≥ 2 radiation esophagitis (RE) in lung cancer patients undergoing radiotherapy, we propose a multi-task auxiliary learning approach to define accurate and objective ROIs based on radiation dose distribution (RDD) images.
Materials And Methods: Lung cancer patients who underwent radiotherapy were gathered retrospectively from hospital 1 (January 2020 and December 2022) for model development.