98%
921
2 minutes
20
The aim of the work is to compare the properties of nanohydroxyapatite coatings obtained using the electrophoretic deposition method (EDP) at 10 V, 20 V, and 30 V, and with deposit times of 2 and 5 min. The primary sedimentation was used to minimize the risk of the formation of particle agglomerates on the sample surface. Evaluation of the coating was performed by using a Scanning Electron Microscope (SEM), Energy-Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), optical profilometer, drop shape analyzer, and a nanoscratch tester. All of the coatings are homogeneous without any agglomerates. When low voltage (10 V) was used, the coatings were uniform and continuous regardless of the deposition time. The increase in voltage resulted in the formation of cracks in the coatings. The wettability test shows the hydrophilic behavior of the coatings and the mean contact angle values are in the range of 20-37°. The coatings showed excellent adhesion to the substrate. The application of a maximum force of 400 mN did not cause delamination in most coatings. It is concluded that the optimal coating for orthopedic implants (such as hip joint implants, knee joint implants or facial elements) is obtained at 10 V and 5 min because of its homogeneity, and a contact angle that promotes osseointegration and great adhesion to the substrate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122981 | PMC |
http://dx.doi.org/10.3390/ma17102242 | DOI Listing |
Langmuir
September 2025
Microelectronics & Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400 Johor, Malaysia.
Achieving a crack-free, high-surface-area photoanode is essential for maximizing the efficiency of dye-sensitized solar cells (DSSCs). In this work, rutile titanium dioxide (rTiO) nanoflowers were synthesized hydrothermally and then conformally coated with copper(I) oxide (CuO) by RF magnetron sputtering to seal pre-existing cracks and to create a nanothorn surface favorable for dye adsorption. Systematic control of the sputtering time identified 60 min as optimal condition, yielding a photoanode thickness of about 6.
View Article and Find Full Text PDFAnalyst
September 2025
School of Information Science and Technology, Fudan University, 220 Handan Rd, Shanghai 200433, China.
Mercury(II) ions (Hg) are one of the most common and highly toxic heavy metal ions, which can contaminate the environment and damage the human health. Therefore, the precise detection of trace Hg concentration is particularly important. Herein, gold nanoparticles-enhanced silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor was developed for the highly sensitive detection of Hg ions.
View Article and Find Full Text PDFLangmuir
September 2025
Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225127, Jiangsu, China.
To expand the application scope of carbon steel, imparting superhydrophobicity to its surface offers an effective strategy to overcome its inherently poor corrosion resistance. However, in marine environments, conventional superhydrophobic coatings often suffer from limited mechanical durability and inadequate long-term corrosion protection. In this study, a durable superhydrophobic bilayer coating composed of PDMS-MWCNTs (top layer) and PDMS (bottom layer) was developed to address these challenges.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran.
The development of high-performance neural interfaces is critical for advancing brain-machine communication and treating neurological disorders. A major challenge in neural electrode design is achieving a seamless biological-electronic interface with optimized electrochemical properties, mechanical stability, and biocompatibility. In this study, we introduce a hierarchical micronanostructured poly(3,4-ethylenedioxythiophene)-polydopamine (PEDOT-PDA) coating on titanium nitride (TiN) microelectrodes engineered to enhance electrophysiological signal recording and neural integration.
View Article and Find Full Text PDFAdv Mater
September 2025
College of Smart Materials and Future Energy, Fudan University, Shanghai, 200433, P. R. China.
All-solid-state batteries (ASSBs) utilizing solid electrolytes, which replace flammable liquid electrolytes, are regarded as one of the most promising prospective energy storage devices due to their inherent safety advantages and high energy density potential. As an emerging class of electrolytes for ASSBs, hydridoborates have attracted research interest because of their attractive material properties, including superior compatibility with metal anodes, low gravimetric density, and excellent solution processability. In this review, hydridoborate-based solid electrolytes (SEs) for all-solid-state batteries, including boranuide-based SEs, arachno-hydridoborate-based SEs, nido-hydridoborate-based SEs, closo-hydridoborate-based SEs, and conjuncto-hydridoborate-based SEs, are comprehensively summarized.
View Article and Find Full Text PDF