Publications by authors named "Gilles Pecastaings"

We report the preparation of a helical complex and its study in molecular junctions. We show that the SAMs of this racemic compound present electrically robust behaviour which will pave the way for future studies on the CISS effect with analogous enantiopure compounds.

View Article and Find Full Text PDF

Enhancing the local substrate concentration is a crucial strategy in nature for facilitating the proximity of two enzymes. The substrate of the first enzyme is transformed into a by-product that travels to the active site of the second enzyme without external diffusion, then transformed into a product and eventually expelled from the complex. In an effort to optimize the antimicrobial properties of myeloperoxidase from Rhodopirellula baltica (RbMPO), we created a library of fused chimeras between a glucose oxidase (GOx) and RbMPO so that HO could be continuously perfused in the vicinity RbMPO, enabling the production of HOCl or HOSCN, well-known antimicrobial agents.

View Article and Find Full Text PDF

DNA nanopores appear to be a plausible alternative to the use of transmembrane proteins. The specificity and programmability of DNA interactions allow the design of synthetic channels that insert into lipid bilayers and can regulate the ionic transport across them. In this Communication, we investigate the dependence of insertion capabilities on the electrostatic properties of the nanopore and show that the presence of a permanent electric dipole is an important factor for the nanopore to insert into the membrane.

View Article and Find Full Text PDF

Graphene in water is electrically charged in most conditions. The level of charge can be large enough to stabilize single (or few) layer graphene colloidal dispersions in water, without the need of using any other additive. In this work, potentiometric titration, isothermal titration calorimetry, electrokinetic measurements, Density Functional Theory calculations, Raman Spectroscopy, and direct force measurements using Atomic Force Microscopy to investigate this charge and explore its origin are combined.

View Article and Find Full Text PDF

The aim of the work is to compare the properties of nanohydroxyapatite coatings obtained using the electrophoretic deposition method (EDP) at 10 V, 20 V, and 30 V, and with deposit times of 2 and 5 min. The primary sedimentation was used to minimize the risk of the formation of particle agglomerates on the sample surface. Evaluation of the coating was performed by using a Scanning Electron Microscope (SEM), Energy-Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), optical profilometer, drop shape analyzer, and a nanoscratch tester.

View Article and Find Full Text PDF

The selective binding properties of a 13-mer oligoamide foldamer capsule composed of 4 different aromatic subunits are reported. The capsule was designed to recognize dicarboxylic acids through multiple-point interactions owing to a combination of protonation/deprotonation events, H-bonding, and geometrical constraints imparted by the rigidity of the foldamer backbone. Compared to tartaric acid, binding of 2,2-difluorosuccinic acid or 2,2,3,3-tetrafluorosuccinic acid resulted in symmetry breaking due to deprotonation of only one of the two carboxylic acid groups of the encapsulated species as shown by NMR studies in solution and by single-crystal X-ray diffraction in the solid state.

View Article and Find Full Text PDF

The very stable helices of 8-amino-2-quinolinecarboxylic acid oligoamides are shown to uptake Cu ions in their cavity through deprotonation of their amide functions with minimal alteration of their shape, unlike most metallo-organic structures which generally differ from their organic precursors. The outcome is the formation of intramolecular linear arrays of a defined number of Cu centers (up to sixteen in this study) at a 3 Å distance, forming a molecular mimic of a metal wire completely surrounded by an organic sheath. The helices pack in the solid state so that the arrays of Cu extend intermolecularly.

View Article and Find Full Text PDF

The advantageous biological properties of polysaccharides and precise stimuli-responsiveness of elastin-like polypeptides (ELPs) are of great interest for the design of polysaccharide- and polypeptide-based amphiphilic block copolymers for biomedical applications. Herein, we report the synthesis and characterization of a series of polysaccharide--ELP copolymers, containing two biocompatible and biodegradable blocks coupled via copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The resulting bioconjugates are capable of self-assembling into well-defined nanoparticles in aqueous solution upon raising the solution temperature above a specific transition temperature ()-a characteristic of the ELP moiety.

View Article and Find Full Text PDF

The combination of the nonsolvent-induced phase separation (NIPS) process with a solvent vapor annealing (SVA) treatment is used to produce asymmetric and hydrophobic thick films having different long-range ordered network nanostructures, which are inaccessible via currently available membrane fabrication methods. We show that the disordered phase generated by NIPS on the material top surface can be transformed into a highly ordered bicontinuous network nanostructure during the SVA process without disrupting the substructure morphology. For instance, by using a straightforward blending approach, either a triply periodic alternating diamond (D) structure or a core-shell perforated lamellar (PL) phase was demonstrated on the skin layer of fully hydrophobic poly(1,1-dimethyl silacyclobutane)--polystyrene--poly(methyl methacrylate) (PDMSB--PS--PMMA) thick films.

View Article and Find Full Text PDF

3-Miktoarm star terpolymer architecture (3µ-ABC), consisting of three dissimilar polymer chains, A, B, and C connected at a junction point, provides a unique opportunity in the design of complex nanoscale patterns such as Archimedean tilings that are not accessible from linear ABC terpolymers. In this work, the synthesis and the self-assembly of 3-miktoarm star terpolymers, namely, polystyrene-arm-poly(2-vinylpyridine)-arm-polyisoprene (3µ-SPI) into Archimedean tiling patterns is described. Several 3µ-SPI terpolymers are produced via a mid-functional PS-b-P2VP, synthesized by sequential anionic polymerization, using a 1,1-diphenylethylene bearing a tert-butyldimethylsilyl-protected hydroxyl functionality as a core molecule.

View Article and Find Full Text PDF

Materials with a high and tunable refractive index are attractive for nanophotonic applications. In this contribution, we propose a straightforward fabrication technique of high-refractive index surfaces based on self-assembled nanostructured block copolymer thin films. The selective and customizable metal incorporation within out-of-plane polymer lamellae produces azimuthally isotropic metallic nanostructures of defined geometries, which were analysed using microscopy and small-angle X-ray scattering techniques.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNCs) are promising candidates for a myriad of applications; however, successful utilization of CNCs requires balanced and multifunctional properties, which require ever more applied concepts for supramolecular tailoring. We present here a facile and straightforward route to generate dual functional CNCs using poly(acrylic acid) (PAA) and biosynthetic elastin-like polypeptides (ELPs). We utilize thiol-maleimide chemistry and SI-ATRP to harvest the temperature responsiveness of ELPs and pH sensitivity of PAA to confer multifunctionality to CNCs.

View Article and Find Full Text PDF

The synthesis and self-assembly in thin-film configuration of linear ABC triblock terpolymer chains consisting of polystyrene (PS), poly(2-vinylpyridine) (P2VP), and polyisoprene (PI) are described. For that purpose, a hydroxyl-terminated PS-b-P2VP (45 kg mol ) building block and a carboxyl-terminated PI (9 kg mol ) are first separately prepared by anionic polymerization, and then are coupled via a Steglich esterification reaction. This quantitative and metal-free catalyst synthesis route reveals to be very interesting since functionalization and purification steps are straightforward, and well-defined terpolymers are produced.

View Article and Find Full Text PDF

Nanotemplates derived from the self-assembly of AB-type block copolymers provide an elegant route to achieve well-defined metallic dot arrays, even if the variety of pattern symmetries is restricted due to the limited number of structures offered by microphase separated diblock copolymers. A strategy that relies on the use of complex network structures accessible through the self-assembly of linear ABC-type terpolymers is presented for the formation of metallic nanodots arrays with "outside-the-box" symmetries. Patterned templates formed by the cubic Q and orthorhombic O network structures are used as excellent platforms to build well-ordered gold nanodot arrays with unique p3m1 and p2 symmetries, respectively.

View Article and Find Full Text PDF

Aromatic foldamers are bioinspired architectures whose potential use in materials remains largely unexplored. Here we report our investigation of vertical and horizontal charge transport over long distances in helical oligo-quinolinecarboxamide foldamers organized as single monolayers on Au or SiO. Conductive atomic force microscopy showed that vertical conductivity is efficient and that it displays a low attenuation with foldamer length (0.

View Article and Find Full Text PDF

The fabrication of organic solar cells from aqueous dispersions of photoactive nanoparticles has recently attracted the interest of the photovoltaic community, since these dispersions offer an eco-friendly solution for the fabrication of solar cells, avoiding the use of toxic solvents. In this work, aqueous dispersions of pure poly[n-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl-C -butyric acid methyl ester (PC BM) nanoparticles, as well as of composite PC BM:PCDTBT nanoparticles, are prepared using the nanoprecipitation postpolymerization method. These dispersions are subsequently used to form the active layer of organic photovoltaic cells.

View Article and Find Full Text PDF

Herein we propose a versatile method for the surface tailoring of cellulose nanocrystals (CNCs) based on the reactivity of vinyl ester molecules toward the accessible hydroxyl groups located at the surface of the nanoparticles. CNCs produced from wood pulp were acylated in various conditions, with potassium carbonate as catalyst and under microwave activation. The impact of solvent, temperature and reagent concentration on the reaction efficiency and kinetics was then investigated, using vinyl acetate as a model vinyl ester.

View Article and Find Full Text PDF

A major issue that inhibits the large-scale fabrication of organic solar modules is the use of chlorinated solvents considered to be toxic and hazardous. In this work, composite particles of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2',1',3'-benzothiadiazole] (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl ester (PCBM) were obtained in water from a versatile and a ready-to-market methodology based on postpolymerization miniemulsification. Depending on the experimental conditions, size-controlled particles comprising both the electron donor and the electron acceptor were obtained and characterized using transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle neutron scattering (SANS), UV-visible absorption, and fluorescence spectroscopy.

View Article and Find Full Text PDF

Printed organic photodetectors can transform plastic, paper or glass into smart surfaces. This innovative technology is now growing exponentially due to the strong demand in human-machine interfaces. To date, only niche markets are targeted since organic sensors still present reduced performances in comparison with their inorganic counterparts.

View Article and Find Full Text PDF

Well-defined single-ion diblock copolymers consisting of a Li-ion conductive poly(styrenesulfonyllithium(trifluoromethylsulfonyl)imide) (PSLiTFSI) block associated with a glassy polystyrene (PS) block have been synthesized via reversible addition fragmentation chain transfer polymerization. Conductivity anisotropy ratio up to 1000 has been achieved from PS-b-PSLiTFSI thin films by comparing Li-ion conductivities of out-of-plane (aligned) and in-plane (antialigned) cylinder morphologies at 40 °C. Blending of PS-b-PSLiTFSI thin films with poly(ethylene oxide) homopolymer (hPEO) enables a substantial improvement of Li-ion transport within aligned cylindrical domains, since hPEO, preferentially located in PSLiTFSI domains, is an excellent lithium-solvating material.

View Article and Find Full Text PDF

Laterally ordered sub-10 nm features are produced from the directed self-assembly of poly(1,1-dimethyl silacyclo-butane)-block-poly(methyl methacrylate) (PDMSB-b-PMMA) thin films on sinusoidal azobenzene-containing patterns. The use of sinusoidal surface relief grating enables the formation of very large grain areas (over several µm(2) ) consisting of out-of-plane PMMA cylinders.

View Article and Find Full Text PDF

The preparation of magnetic inks stable over time made of L10-ordered FePt nanoparticles, thiol-ended poly(ethylene glycol) methyl ether (mPEO-SH) compatibilizing macromolecules and asymmetric polystyrene-block-poly(ethylene oxide) copolymers (BCP) as a subsequent self-organizing medium was optimized. It was demonstrated that the use of sacrificial MgO shells as physical barriers during the annealing stage for getting the L10-ordered state makes easier and more efficient the anchoring of compatibilizing PEO macromolecules onto the nanoparticles surface. L10-FePt grafted nanoparticles have shown a good colloidal stability and affinity with the PEO domains of the BCP leading to L10-FePt/BCP composite thin layers with individual magnetic dots dispersed in the BCP matrix.

View Article and Find Full Text PDF

The surface of cotton cellulose nanowhiskers (CNW's) was esterified by vinyl acetate (VAc) and vinyl cinnamate (VCin), in the presence of potassium carbonate as catalyst. Reactions were performed under microwave activation and monitored by Fourier transform infrared (FT-IR) spectroscopy. The supramolecular structure of CNW's before and after modification was characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM).

View Article and Find Full Text PDF

We have overcome the cost and time consumption limitations of common lithography techniques used to control the self-assembly of block copolymers into highly ordered 2D arrays through the use of a guiding pattern created from a polymeric sub-layer. The guiding pattern is a sinusoidal surface-relief grating interferometrically inscribed onto an azobenzene containing copolymer sub-layer leading to a defect-free single grain of block copolymer domains.

View Article and Find Full Text PDF

The organization process of asymmetric poly(styrene-block-ethylene oxide) (PS-b-PEO) copolymer thin films blended with FePt nanoparticles is studied. In a first step, it is shown that FePt nanoparticles stabilized by oleic acid ligands are distributed within the PS matrix phase, whereas the same particles partially covered with short dopamine-terminated-methoxy poly(ethylene oxide) (mPEO-Dopa) are located at PS/PEO interfaces. The swelling of PS domains, induced by FePt_oleic acid nanoparticles during the solvent annealing process, results in formation of a disordered microstructure in comparison to the well-organized hexagonally close-packed (HCP) cylinder phase formed in the neat PS-b-PEO copolymer.

View Article and Find Full Text PDF