ACS Appl Bio Mater
September 2025
The development of high-performance neural interfaces is critical for advancing brain-machine communication and treating neurological disorders. A major challenge in neural electrode design is achieving a seamless biological-electronic interface with optimized electrochemical properties, mechanical stability, and biocompatibility. In this study, we introduce a hierarchical micronanostructured poly(3,4-ethylenedioxythiophene)-polydopamine (PEDOT-PDA) coating on titanium nitride (TiN) microelectrodes engineered to enhance electrophysiological signal recording and neural integration.
View Article and Find Full Text PDFTriboelectric nanogenerators (TENGs) offer a sustainable, battery-free solution for wearable electronics by converting motion into energy. However, direct skin contact poses bacterial contamination risks, requiring advanced antibacterial strategies. This study developed an on-demand antibacterial platform based on TENG-induced electrical stimulation of CuS substrates, benchmarked against CuO.
View Article and Find Full Text PDFThe development of wearable sensing platforms for continuous monitoring of sweat biomarkers has gained significant attention, particularly for lactate detection. This study presents the design and fabrication of a novel wearable lactate biosensor that integrates a flexible supercapacitor power supply with an advanced lactate sensing platform. The sensing platform features NiCo nanosheets electrodeposited onto nanocages of bimetallic CoFe Prussian Blue analogue (PBA), providing an optimal microenvironment for the immobilization of lactate oxidase (LOx) enzymes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Chronic wound healing is often a prolonged process with the migration and proliferation of fibroblast cells playing crucial roles. Electrical stimulation (ES) has emerged as a promising physical therapy modality to promote these key events. In this study, we address this issue by employing a triboelectric nanogenerator (TENG) as an electrical stimulator for both drug release and the stimulation of fibroblast cells.
View Article and Find Full Text PDFRespiration stands as a vital process reflecting physiological and pathological human health status. Exhaled breath analysis offers a facile, non-invasive, swift, and cost-effective approach for diagnosing and monitoring diseases by detecting concentration changes of specific biomarkers. In this study, we employed Polyethylene oxide/copper (I) oxide composite nanofibers (PCNFs), synthesized via the electrospinning method as the sensing material to measure ethanol levels (1-200 ppm) in an exhaled breath simulator environment.
View Article and Find Full Text PDFSkin wounds are common in accidental injuries, surgical operations, and chronic diseases. The migration and proliferation of fibroblast cells are fundamental to wound healing, which can be promoted by electrical stimulation as a physical therapy modality. Therefore, the development of portable electrical stimulation devices that can be used by patients on-site is an essential need.
View Article and Find Full Text PDFAn increasing number of frequently applied portable electronics has raised the significance of self-powered systems. In this regard, triboelectric nanogenerators (TENGs) have drawn considerable attention due to their diversity of design and high power output. As a widely used material in TENG electrodes, polydimethylsiloxane (PDMS) shows attractive characteristics, such as electron affinity, flexibility, and facile fabrication.
View Article and Find Full Text PDFSelf-sufficient power sources provide a promising application of abundant electronic devices utilized in detection of ambient properties. Recently, triboelectric nanogenerators (TENGs) have been widely investigated to broaden the self-powered systems by converting the ambient mechanical agitations into electrical voltage and current. Graphene oxide (GO), not only for sensing applications but also as a brilliant energy-related nanomaterial, provides a wide range of controllable bandgap energies, as well as facile synthesis route.
View Article and Find Full Text PDFNeurological disorders and nerve injuries, such as spinal cord injury, stroke, and multiple sclerosis can result in the loss of muscle function. Electrical stimulation of the neuronal cells is the currently available clinical treatment in this regard. As an effective energy harvester, the triboelectric nanogenerators (TENG) can be used for self-powered neural/muscle stimulations because the output of the TENG provides stimulation pulses for nerves.
View Article and Find Full Text PDFSelf-powered detectors based on triboelectric nanogenerators (TENG) have been considered because of their capability to convert ambient mechanical energy to electrical out-put signal, instead of conventional usage of electrochemical batteries as power sources. In this regard, the self-powered photodetectors have been designed through totally two lay out called passive and active circuit. in former model, impedance matching between the TENG and the resistance of the circuit's elements is crucial, which is not investigated systematically till now.
View Article and Find Full Text PDFThe triboelectric nanogenerator (TENG) is a promising technology for mechanical energy harvesting. TENG has proven to be an excellent option for power generation but typically TENGs output power drops significantly in humid environments. In this work, the effect of electrode's material on power output, considering smooth and nanostructured porous structures with various surface hydrophobicity, is investigated under various humidity conditions.
View Article and Find Full Text PDFA triboelectric nanogenerator (TENG) electrode sensitive to the adsorption of water molecules has been introduced to create a self-powered humidity sensor. Graphene oxide (GO) nanosheets and graphene oxide nanoribbon (GONR) possessing oxygenated functional groups, as well as high dielectric constants, have been proposed as appropriate candidates for this purpose. GO papers have been fabricated in three forms, i.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2021
Carbon nanotubes (CNTs) coatings have been shown over the past few years as a promising material for neural interface applications. In particular, in the field of nerve implants, CNTs have fundamental advantages due to their unique mechanical and electrical properties. In this study, carbon nanotubes multi-electrode arrays (CNT-modified-Au MEAs) were fabricated based on gold multi-electrode arrays (Au-MEAs).
View Article and Find Full Text PDFHere in this research, room temperature ethanol and humidity sensors were prepared based on two dimensional (2D) hybrid nanostructures of tungsten di-sulfide (WS) nanosheets and graphene oxide nanoribbons (GONRs) as GOWS. The characterization results based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (ESD), Raman spectroscopy and X-ray diffraction (XRD) analysis confirmed the hybrid formations. Ethanol sensing of drop-casted GOWS films on SiO substrate indicated increasing in gas response up to 5 and 55 times higher compared to pristine GONRs and WS films respectively.
View Article and Find Full Text PDFStable and flexible super-hydrophilic nanotubular-based titanium oxide electrode has been utilized as the active electrode of self-powered humidity sensor. TiO nanotubular electrodes fabricated through anodization method and utilized in combination with Kapton electrode as the triboelectric nanogenerator (TENG). Vertical contact-separation mode TENG performance has been examined in various range of frequencies and the maximum output voltage and current more than 300 V and 40 μA respectively with maximum power of 1.
View Article and Find Full Text PDFTriboelectric nanogenerators (TENGs) offer an emerging market of self-sufficient power sources, converting the mechanical energy of the environment to electricity. Recently reported high power densities for the TENGs provide new applications opportunities, such as self-powered sensors. Here in this research, a flexible graphene oxide (GO) paper was fabricated through a straightforward method and utilized as the electrode of TENGs.
View Article and Find Full Text PDFEffect of sandblasting of the copper electrode structures before deposition of gold thin film for micro electrical impedance tomography (EIT) system has been studied experimentally. The comparison has been performed on the unmodified copper electrodes and the sandblasted electrodes before deposition of gold layer, using structural analysis while their performance in EIT system has been measured and analyzed. The results of scanning electron microscopy and atomic force microscopy show that the sandblasting of the electrodes results in the deposition of gold film with smaller grain size and uniformly, comparing to the unmodified structure.
View Article and Find Full Text PDFIn this research, we employed transient photo-voltage rise and decay measurements to investigate the origin of slow unsymmetrical rise and decay profiles in single and triple cation perovskite solar cells. Drastic changes in photo-voltage decay profile were observed upon insertion of Br, Cs and FA ions into perovskite structures. In order to explain our observations, the activation energy for ionic defects was measured and an equivalent circuit model was proposed containing both electrical and ionic components.
View Article and Find Full Text PDFSo-called negative capacitance seems to remain an obscure feature in the analysis of the frequency-dependent impedance of perovskite solar cells. It belongs to one of the puzzling peculiarities arising from the mixed ionic-electronic conductivity of this class of semiconductor. Here we show that apparently high capacitances in general (positive and negative) are not related to any capacitive feature in the sense of a corresponding charge accumulation.
View Article and Find Full Text PDFMulti electrode arrays (MEA) have been exploited in different electrophysiological applications. In neurological applications, MEAs are the vital interfaces between neurons and the electronic circuits with dual role; transmitting electric signal to the neurons and converting neural activity to the electric signal. Since the performance of the electrodes has a direct effect on the quality of the recorded neuronal signal, as well as the stimulation, the true choice of electrode material for MEA is crucial.
View Article and Find Full Text PDFWe have investigated the influence of perovskite morphology on slow and fast charge transport in the perovskite solar cells. Solar cells with different perovskite cuboid sizes (50-300 nm) have been fabricated using various methylammonium iodide concentrations. Both the low-frequency capacitance and hysteresis are maximum for the cell with the largest perovskite grains (300 nm).
View Article and Find Full Text PDFHere in this study, successful conversion of visible light into electricity has been achieved through utilizing microalgal pigments as a sensitizer of nanostructured photo-electrode of dye-sensitized solar cells (DSSCs). For the first time, photosynthetic pigments extracted from microalgae grown in wastewater is employed to imitate photosynthesis process in bio-molecule-sensitized solar cells. Two designs of photoanode were employed: 10 μm nanoparticular TiO2 electrode and 20 μm long self-ordered, vertically oriented nanotube arrays of titanium dioxide films.
View Article and Find Full Text PDFIn this work, we report on fabrication and characterization of dye-sensitized solar cells based on TiO(2) nanotube/nanoparticle (NT/NP) composite electrodes. TiO(2) nanotubes were prepared by anodization of Ti foil in an organic electrolyte. The nanotubes were chemically separated from the foil, ground and added to a TiO(2) nanoparticle paste, from which composite NT/NP electrodes were fabricated.
View Article and Find Full Text PDFDye-sensitized solar cells (DSCs) with nanotubular TiO(2) electrodes of varying thicknesses are compared to DSCs based on conventional nanoparticulate electrodes. Despite the higher degree of order in one-dimensional nanotubular electrodes, electron transport times and diffusion coefficients, determined under short-circuit conditions, are comparable to those of nanoparticulate electrodes. The quasi-Fermi level, however, is much lower in the nanotubes, suggesting a lower concentration of conduction band electrons.
View Article and Find Full Text PDF