Publications by authors named "Elham Asadian"

The development of wearable sensing platforms for continuous monitoring of sweat biomarkers has gained significant attention, particularly for lactate detection. This study presents the design and fabrication of a novel wearable lactate biosensor that integrates a flexible supercapacitor power supply with an advanced lactate sensing platform. The sensing platform features NiCo nanosheets electrodeposited onto nanocages of bimetallic CoFe Prussian Blue analogue (PBA), providing an optimal microenvironment for the immobilization of lactate oxidase (LOx) enzymes.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the joints, leading to pain, swelling, and potential joint destruction. Effective management of RA is crucial to improve patients' quality of life and prevent long-term disability. Methotrexate (MTX) is a widely used disease-modifying antirheumatic drug (DMARD) that has shown efficacy in treating RA.

View Article and Find Full Text PDF

The field of biomedical engineering continually seeks innovative technologies to address complex healthcare challenges, ranging from tissue regeneration to drug delivery and biosensing. Plant skeletons offer promising opportunities for these applications due to their unique hierarchical structures, desirable porosity, inherent biocompatibility, and adjustable mechanical properties. This review comprehensively discusses chemical principles underlying the utilization of plant-based scaffolds in biomedical engineering.

View Article and Find Full Text PDF

Background: Lately, there has been increasing interest in the benefits of metal-organic frameworks, and among them, zeolitic imidazolate frameworks (ZIF - 8) stand out as one of the most commonly employed systems owing to their unique characteristics.

Objectives: Given that properties like particle size play a key role in biomedical applications of nanoparticles, optimizing the synthesis conditions becomes crucial. Additionally, it is essential to label these nanoparticles to track them effectively within the body.

View Article and Find Full Text PDF

Chronic wound healing is often a prolonged process with the migration and proliferation of fibroblast cells playing crucial roles. Electrical stimulation (ES) has emerged as a promising physical therapy modality to promote these key events. In this study, we address this issue by employing a triboelectric nanogenerator (TENG) as an electrical stimulator for both drug release and the stimulation of fibroblast cells.

View Article and Find Full Text PDF

The management of acute and chronic wounds resulting from diverse injuries poses a significant challenge to clinical practices and healthcare providers. Wound healing is a complex biological process driven by a natural physiological response. This process involves four distinct phases, namely hemostasis, inflammation, proliferation, and remodeling.

View Article and Find Full Text PDF

Skin wounds are common in accidental injuries, surgical operations, and chronic diseases. The migration and proliferation of fibroblast cells are fundamental to wound healing, which can be promoted by electrical stimulation as a physical therapy modality. Therefore, the development of portable electrical stimulation devices that can be used by patients on-site is an essential need.

View Article and Find Full Text PDF

Considering the severe hazards of abnormal concentration level of HS as an extremely toxic gas to the human body and due to the disability of olfactory system in sensing toxic level of HS concentration, a reliable, sensitive, selective and rapid method for the detection of HS is proposed and its efficacy is analyzed through simulation. The proposed system is based on the deflection of a laser beam in response to the temperature variations in its path. In order to provide selectivity and improve sensitivity, gold nanostructures were employed in the system.

View Article and Find Full Text PDF

Self-sufficient power sources provide a promising application of abundant electronic devices utilized in detection of ambient properties. Recently, triboelectric nanogenerators (TENGs) have been widely investigated to broaden the self-powered systems by converting the ambient mechanical agitations into electrical voltage and current. Graphene oxide (GO), not only for sensing applications but also as a brilliant energy-related nanomaterial, provides a wide range of controllable bandgap energies, as well as facile synthesis route.

View Article and Find Full Text PDF

Neurological disorders and nerve injuries, such as spinal cord injury, stroke, and multiple sclerosis can result in the loss of muscle function. Electrical stimulation of the neuronal cells is the currently available clinical treatment in this regard. As an effective energy harvester, the triboelectric nanogenerators (TENG) can be used for self-powered neural/muscle stimulations because the output of the TENG provides stimulation pulses for nerves.

View Article and Find Full Text PDF

The fabrication of supported noble metal nanocrystals (NCs) with well-controlled morphologies have been attracted considerable interests due to their merits in a wide variety of applications. Photodeposition is a facile and effective method to load metals over semiconductors in a simple slurry reactor under irradiation. By optimizing the photodeposition process, the size, chemical states, and the geometrical distribution of metal NCs have been successfully tuned.

View Article and Find Full Text PDF

A triboelectric nanogenerator (TENG) electrode sensitive to the adsorption of water molecules has been introduced to create a self-powered humidity sensor. Graphene oxide (GO) nanosheets and graphene oxide nanoribbon (GONR) possessing oxygenated functional groups, as well as high dielectric constants, have been proposed as appropriate candidates for this purpose. GO papers have been fabricated in three forms, i.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are a fascinating class of crystalline porous materials composed of metal ions and organic ligands. Due to their attractive properties, MOFs can potentially offer biomedical field applications, such as drug delivery and imaging. This study aimed to systematically identify the affecting factors on the MOF characteristics and their effects on structural and biological characteristics.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) coatings have been shown over the past few years as a promising material for neural interface applications. In particular, in the field of nerve implants, CNTs have fundamental advantages due to their unique mechanical and electrical properties. In this study, carbon nanotubes multi-electrode arrays (CNT-modified-Au MEAs) were fabricated based on gold multi-electrode arrays (Au-MEAs).

View Article and Find Full Text PDF

Here in this research, room temperature ethanol and humidity sensors were prepared based on two dimensional (2D) hybrid nanostructures of tungsten di-sulfide (WS) nanosheets and graphene oxide nanoribbons (GONRs) as GOWS. The characterization results based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (ESD), Raman spectroscopy and X-ray diffraction (XRD) analysis confirmed the hybrid formations. Ethanol sensing of drop-casted GOWS films on SiO substrate indicated increasing in gas response up to 5 and 55 times higher compared to pristine GONRs and WS films respectively.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) offer an emerging market of self-sufficient power sources, converting the mechanical energy of the environment to electricity. Recently reported high power densities for the TENGs provide new applications opportunities, such as self-powered sensors. Here in this research, a flexible graphene oxide (GO) paper was fabricated through a straightforward method and utilized as the electrode of TENGs.

View Article and Find Full Text PDF

Background: is considered as one of the most important pathogens, and high antibiotic resistance to has become an alarming concern. This study attempts to further improve curcumin solubility and stability by producing the involved nanoparticle and investigate the effect of this nanoparticle on those virulence genes of in pathogenicity and biofilm formation.

Methods: In this study, the curcumin nanoparticles were synthesized and characterized, and the antibacterial and antibiofilm effects of Nano-curcumin and curcumin were investigated by microdilution broth and microtiter plate, respectively.

View Article and Find Full Text PDF

In this research, adsorption and photocatalytic degradation process were utilized to remove organic dye from wastewater. To accomplish that, a newly-designed ternary nanostructure based on Ag nanoparticles/ZnO nanorods/three-dimensional graphene network (Ag NPs/ZnO NRs/3DG) was prepared using a combined hydrothermal-photodeposition method. The three-dimensional structure of graphene hydrogel as a support for growth of ZnO nanorods was characterized using field emission scanning electron microscopy (FESEM).

View Article and Find Full Text PDF

By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry.

View Article and Find Full Text PDF