98%
921
2 minutes
20
The fabrication of supported noble metal nanocrystals (NCs) with well-controlled morphologies have been attracted considerable interests due to their merits in a wide variety of applications. Photodeposition is a facile and effective method to load metals over semiconductors in a simple slurry reactor under irradiation. By optimizing the photodeposition process, the size, chemical states, and the geometrical distribution of metal NCs have been successfully tuned. However, metal NCs with well-controlled shapes through the photodeposition process have not been reported until now. Here, we report our important advances in the controlled photodeposition process to load regular noble metal NCs. Reduced graphene oxide (rGO) is introduced as a reservoir for the fast transfer of photoelectrons to avoid the fast accumulation of photogenerated electrons on the noble metals which makes the growth process uncontrollable. Meanwhile, rGO also provides stable surface for the controlled nucleation and oriented growth. Noble metal NCs with regular morphologies are then evenly deposited on rGO. This strategy has been demonstrated feasible for different precious metals (Pd, Au, and Pt) and semiconductors (TiO, ZnO, ZrO, CeO, and g-CN). In the prototype application of electrochemical hydrogen evolution reaction, regular Pd NCs with enclosed {111} facets showed much better performance compared with that of irregular Pd NCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c01209 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, P.R. China.
Silicon carbide (SiC) membranes combine exceptional chemical, thermal, and mechanical stability but suffer from surface inertness that precludes functionalization. Conversely, MOFs offer unmatched molecular selectivity but are typically powders, severely limiting their practical use. To address this, we develop a generalizable route to fabricate ultrastable MOF@SiC membranes via sequential oxidation and acidification, creating abundant Si-OH sites on SiC surfaces that covalently bond with Zr-MOF crystals; the bonding mechanism between MOFs and substrates has been extensively studied.
View Article and Find Full Text PDFAdv Mater
September 2025
KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Metal-nitrogen-carbon (M-N-C) catalysts display considerable potential as cost-effective alternatives to noble metals in oxygen electrocatalysis. However, uncontrolled atomic migration and random structural rearrangement during pyrolysis often lead to disordered coordination environments and sparse active sites, fundamentally limiting their intrinsic catalytic activities and long-term durability. Herein, a novel strategy is reported for use in directionally regulating atomic migration pathways via the incorporation of a foreign metal (La).
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China.
Developing efficient and durable catalysts for the oxygen evolution reaction (OER) in acidic media is essential for advancing proton exchange membrane water electrolysis (PEMWE). However, catalyst instability caused by lattice oxygen (O) depletion and metal dissolution remains a critical barrier. Here, we propose an oxophilic-site-mediated dynamic oxygen replenishment mechanism (DORM), in which O actively participates in O-O bond formation and is continuously refilled by water-derived species.
View Article and Find Full Text PDFNanoscale
September 2025
Université Paris Cité, Laboratoire ITODYS, CNRS, F-75006 Paris, France.
Aluminum (Al) is a cost-effective alternative to noble metals for plasmonics, particularly in the ultraviolet (UV) and visible regions. However, in the near-infrared (NIR) region, its performance is hindered by interband transitions (IBTs) at around 825 nm, leading to increased optical losses and broad resonances. Surface lattice resonances (SLRs) offer a promising solution by enhancing the plasmonic quality factor (-factor) through coherent coupling of localized surface plasmon (LSP) modes with Rayleigh anomalies.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
College of Smart Agriculture (Research Institute), Xinjiang University, Urumqi 830017, China. Electronic address:
Oligosaccharides are increasingly valuable for preparing noble metal (NM) nanoparticles (NPs) due to excellent biocompatibility and abundant reducing functional groups (e.g., hydroxyl, amino, and aldehyde groups).
View Article and Find Full Text PDF