Patterned Micro Flexible Supercapacitors based on the Rapid Transfer-Printing Method.

ACS Appl Mater Interfaces

Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Developing a simple and rapidly preparative method for patterned flexible supercapacitors is essential and indispensable for the swift advancement of portable devices integrated with micro devices. In this study, we employed a cost-effective and rapid fabrication method based on transfer-printing technology to produce patterned micro flexible supercapacitors with various substrates. The resulting flexible micro supercapacitors not only allow for customized patterns with strong flexibility and resistance to bending, while maintaining a certain level of performance, but also facilitate the creation of diverse circuits to tailor voltage and current to specific requirements. Patterned micro flexible supercapacitors with a thickness of 0.02 mm, based on accordion-like TiCT MXene materials coated on a substrate, demonstrate a specific capacitance of 142.7 mF cm at 0.5 mA cm. The devices exhibit satisfactory capacitance retention (91% after 5000 cycles) and superb mechanical flexibility (71% capacitance retention at 180° bending after 2000 cycles). At a power density of 2.9 mW cm, the energy density of the sandwich structure device reaches 126.8 μWh cm. This study is expected to contribute new ideas for the design and preparation of patterned flexible supercapacitors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c00783DOI Listing

Publication Analysis

Top Keywords

flexible supercapacitors
20
patterned micro
12
micro flexible
12
patterned flexible
8
capacitance retention
8
flexible
6
supercapacitors
6
patterned
5
supercapacitors based
4
based rapid
4

Similar Publications

The rapid development of flexible electronics has intensified the demand for high-performance energy storage solutions. This research aims to enhance the performance of flexible supercapacitors under extreme temperatures through a lignin cross-linked poly(vinyl alcohol) (PVA) gel electrolyte. By incorporating lignin with PVA and using polyethylene glycol diglycidyl ether as a cross-linker, a hydrogel (PL, represents the mass ratio of lignin to PVA) with an enhanced three-dimensional network structure was constructed.

View Article and Find Full Text PDF

Redox-active organic-inorganic hybrid electrode materials are promising candidates for eco-friendly, high-energy-density supercapacitors. The synergy between organic and inorganic components in energy storage devices has attracted considerable interest due to their complementary attributes, including flexibility, long-term stability, and high conductivity. This study presents an innovative approach for synthesizing an organic-inorganic active electrode material by grafting diazonium salts of 8-aminoquinoline (8-AQ-N ) onto CuFeO nanoparticle (NP) surfaces.

View Article and Find Full Text PDF

Flexible, highly conductive, and finely structured conductive materials hold significant promise for applications in flexible supercapacitors. However, the loading effect of conductive active substances and structural design remain critical factors that limit the performance of flexible conductive materials. In this study, polyvinyl alcohol/sodium lignosulfonate (PVA/LS) electrospun films are fabricated and polypyrrole (PPy) particles are loaded onto the surface of the electrospun fibers through in-situ polymerization.

View Article and Find Full Text PDF

Redox-Active Anthraquinone-1-Sulfonic Acid Sodium Salt-Loaded Polyaniline for Dual-Functional Electrochromic Supercapacitors.

Gels

July 2025

Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.

Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling simultaneous energy storage and real-time visual monitoring. In this study, we report a flexible dual-functional EESD constructed using polyaniline (PANI) films doped with anthraquinone-1-sulfonic acid sodium salt (AQS), coupled with a redox-active PVA-based gel electrolyte also incorporating AQS.

View Article and Find Full Text PDF

A Monolithically Integrated MXene-Printed Hybrid Energy System for Wireless Self-Powered Microelectronics.

Small

August 2025

Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.

Reliable and sustainable energy supply remains a critical challenge in wearable and implantable microelectronics. Although hybrid energy strategies show promise, most existing systems rely on stacked, multi-component designs, hindering integration and scalability. Here, a fully printed, monolithically integrated MXene-based system combining active wireless charging and passive energy harvesting is demonstrated.

View Article and Find Full Text PDF