98%
921
2 minutes
20
Accurate measurement of the size of lesions or distances between any two points during endoscopic examination of the gastrointestinal tract is difficult owing to the fisheye lens used in endoscopy. To overcome this issue, we developed a phase-shift method to measure three-dimensional (3D) data on a curved surface, which we present herein. Our system allows the creation of 3D shapes on a curved surface by the phase-shift method using a stripe pattern projected from a small projecting device to an object. For evaluation, 88 measurement points were inserted in porcine stomach tissue, attached to a half-pipe jig, with an inner radius of 21 mm. The accuracy and precision of the measurement data for our shape measurement system were compared with the data obtained using an Olympus STM6 measurement microscope. The accuracy of the path length of a simulated protruded lesion was evaluated using a plaster model of the curved stomach and graph paper. The difference in height measures between the measurement microscope and measurement system data was 0.24 mm for the 88 measurement points on the curved surface of the porcine stomach. The error in the path length measurement for a lesion on an underlying curved surface was <1% for a 10-mm lesion. The software was developed for the automated calculation of the major and minor diameters of each lesion. The accuracy of our measurement system could improve the accuracy of determining the size of lesions, whether protruded or depressed, regardless of the curvature of the underlying surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079539 | PMC |
http://dx.doi.org/10.1002/deo2.381 | DOI Listing |
J Colloid Interface Sci
September 2025
Shanxi Center of Technology Innovation for Advanced Power Battery Material, School of Chemistry and Chemical Engineering, Shanxi Normal University, Taiyuan 030032, China. Electronic address:
Against the backdrop of global carbon neutrality target driving the transformation of energy structure, alcohol fuel cells (AFCs) show great application potential; However, the sluggish kinetics of their anodic alcohol oxidation reaction hinders the commercialization of AFCs. Metallene is a novel 2D material with potential application prospect in the field of electrocatalysis. In this paper, PdMoW trimetallene has been successfully produced by a one-pot wet-chemical method, which displays a unique two-dimensional curved ultrathin graphene structure.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
September 2025
College of Materials Science and Engineering, Hainan University, Haikou, 570228, China. Electronic address:
Deep-sea hydrothermal vents are renowned for being among the most extreme environments on Earth. However, the mussel shells found in these vent sites demonstrate remarkable productivity, despite being subjected to high pressure as well as unusual levels of heavy metals, pH, temperature, CO, and sulphides. To comprehend how these mussels endure such extreme conditions, a systematic comparative study was conducted, focusing on the unique chemical composition, structural designs, and mechanical properties of hydrothermal vent mussels (Bathymodiolus aduloides) in comparison to shallow-water mussels (Mytilus edulis).
View Article and Find Full Text PDFACS Sens
September 2025
The State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Tactile sensing arrays play a crucial role in human-machine interaction, robotics, and artificial intelligence by enabling the perception of physical stimuli on robotic surfaces or human skin. However, skin-attachable sensor arrays still suffer from strain interference and signal crosstalk under stretching or bending, particularly on curved or deformable surfaces. Here, we present a stretchable tactile array that is both strain-insensitive and crosstalk-suppressed, achieved via a hierarchically segmented design that mitigates lateral and vertical deformations synergistically.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Manufacture Science and Engineering, School of Information Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.
The Leidenfrost effect enables near-frictionless droplet transport by suspending droplets on vapor layers, making it pivotal for contact-free manipulation in microscale chemical reactions and material transport applications. Traditional ratchet structures that drive Leidenfrost droplet motion require the substrate material to be heated above the higher Leidenfrost point (LFP) critical temperature, which imposes significant demands on energy consumption and material heat resistance. Herein, we proposed a method that integrates femtosecond laser-induced deposition with femtosecond direct writing to fabricate a textured superwettable patterned surface, achieving directional droplet navigation at a notably low temperature of just 155 °C.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2025
Conjunctival goblet cells (CGCs) are specialized mucin-secreting epithelial cells, playing key roles for ocular surface homeostasis. Their examination is important for diagnosing various ocular surface disorders. However, existing imaging modalities have limitations in examining CGCs over large conjunctival regions.
View Article and Find Full Text PDF