98%
921
2 minutes
20
Reactive oxygen species (ROS) are produced by cellular activities, such as metabolism and immune response, and play important roles in cell signaling and homeostasis. However, overproduced ROS causes irreversible damage to nucleic acids and membrane lipids, supporting genetic mutations and enhancing the effects of aging. Cells defend themselves against ROS using antioxidant systems based on redox-active sulfur and transition metals. Inspired by such biological redox-responsive systems, we developed methionine-containing self-assembling peptides. The Met-containing peptides formed hydrogels that underwent a gel-to-sol phase transition upon oxidation by HO, and the sensitivity of the peptides to the oxidant increased as the number of Met residues increased. The peptide containing three Met residues, the largest number of Met residues in our series of designed peptides, showed the highest sensitivity to oxidation and detoxification to protect cells from ROS damage. In addition, this peptide underwent a phase transition in response to HO produced by an oxidizing enzyme. This study demonstrates the design of a supramolecular biomaterial that is responsive to enzymatically generated ROS and can protect cells against oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170935 | PMC |
http://dx.doi.org/10.1021/acs.biomac.4c00129 | DOI Listing |
Dalton Trans
September 2025
Departamento de Fisica Aplicada-ICMUV, MALTA Consolider Team, Universitat de Valencia, Av. Dr. Moliner 50, 46100 Burjassot (Valencia), Spain.
The impact of external pressure on the characteristics of SrTeO has been thoroughly examined using density-functional theory calculations up to 100 GPa. It has been predicted that SrTeO undergoes three phase transitions in the pressure range covered by this study. A first transition occurs at 2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden, 01069, Germany.
Stimuli-responsive (multiphase) coacervates deserve significant attention as cell-like entities that can adapt to their environment and undergo morphological reconfiguration. In this study, a tandem-triggered transition system is presented that enables the transformation of single-phase coacervates into multiphase structures through the sequential application of two external stimuli: pH and salt concentration. A polyanion containing acid-labile amide bond is incorporated into the membrane-less coacervates.
View Article and Find Full Text PDFCurr Gene Ther
September 2025
Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
Gene therapy has revolutionized the therapeutic landscape for hemophilia A and B, offering the prospect for persistent endogenous production of coagulation factors VIII and IX. Recent advances in adeno-associated virus (AAV)-mediated gene transfer, particularly the approvals of valoctocogene roxaparvovec (Roctavian) and etranacogene dezaparvovec (Hemgenix), mark significant milestones in hemophilia care. This mini-review synthesizes emerging clinical data from phase I-III trials published between 2022 and 2025, emphasizing efficacy, durability, and immunogenicity profiles of leading AAV-based therapies.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Yunnan Key Laboratory of Non-ferrous Metals Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China.
To address palladium supply-demand challenges and conventional recovery inefficiencies, this study develops a lithium-mediated electrodeposition process for efficient palladium recycling from spent catalysts. Density functional theory calculations identified a controlled Pd→LiPd (Pd)→LiPdO (Pd) transformation pathway, and experimental verification confirmed that LiPd precursors underwent oxidative transformation into LiPdO with structural inheritance. LiPdO exhibited Pd-O coordination and underwent rapid dissolution in dilute hydrochloric acid.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Chemical and Veterinary Investigations Office Stuttgart, Schaflandstraße 3/2, 70736, Fellbach, Germany.
Background: Previous studies involving cleanup via conventional solid-phase extraction (SPE) materials to overcome matrix effects for the polar organophosphonate and -phosphinate pesticides glyphosate, glufosinate, ethephon, fosetyl, and their various metabolites often showed limitations due to the existence of various matrix compounds in plant commodities with similar polarity. To overcome existing drawbacks, we utilized the unique selectivity provided by metal oxides as SPE materials. These were exploited in a novel automated online SPE-LC-MS/MS method which allowed analyte-specific trapping in the presence of excessive amounts of matrix compounds as typically contained in extracts of the Quick Polar Pesticides (QuPPe) method.
View Article and Find Full Text PDF