98%
921
2 minutes
20
Porous substrates act as open "interfacial reactors" during the synthesis of polyamide composite membranes via interfacial polymerization. However, achieving a thin and dense polyamide nanofilm with high permeance and selectivity is challenging when using a conventional substrate with uniform wettability. To overcome this limitation, we propose the use of Janus porous substrates as confined interfacial reactors to decouple the local monomer concentration from the total monomer amount during interfacial polymerization. By manipulating the location of the hydrophilic/hydrophobic interface in a Janus porous substrate, we can precisely control the monomer solution confined within the hydrophilic layer without compromising its concentration. The hydrophilic surface ensures the uniform distribution of monomers, preventing the formation of defects. By employing Janus substrates fabricated through single-sided deposition of polydopamine/polyethyleneimine, we significantly reduce the thickness of the polyamide nanofilms from 88.4 to 3.8 nm by decreasing the thickness of the hydrophilic layer. This reduction leads to a remarkable enhancement in water permeance from 7.2 to 52.0 l/m·h·bar while still maintaining ~96% NaSO rejection. The overall performance of this membrane surpasses that of most reported membranes, including state-of-the-art commercial products. The presented strategy is both simple and effective, bringing ultrapermeable polyamide nanofilms one step closer to practical separation applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062503 | PMC |
http://dx.doi.org/10.34133/research.0359 | DOI Listing |
Nat Commun
August 2025
College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin, China.
Membrane nanofiltration (NF) has emerged as a prominent technology for efficient separations of ions, but state-of-the-art polyamide (PA) NF membranes are constrained by a pernicious tradeoff between water permeance and selectivity. This work conceives a versatile molecular engineering strategy to simultaneously improve water permeance and co-cation selectivity through molecular construction of cationic triazolyl heterocyclic polyamide (CTHP) nanofilms via scalable interfacial polymerization. Experimental data and molecular simulations reveal that the CTHP structures precisely regulate the subnanometer pore architecture and binding affinity with water and ions, affording advanced size-sieving and Donnan exclusion while facilitating water partitioning and transport.
View Article and Find Full Text PDFSmall
July 2025
MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
The growing demand for energy-efficient carbon capture has spurred significant advancements in supported ionic liquid membranes (SILMs), which utilize ionic liquid (IL) with high CO solubility for continuous gas purification processes. However, conventional SILMs are hindered by a persistent limitation: thick IL layers (> 50 µm) significantly reduce CO permeance to below 1 GPU, while also causing mechanical failure under prolonged operational pressure. Inspired by the interlocking elytra of Tenebrionidae beetles, which use microscale "teeth" to withstand mechanical stress, locked ionic liquid membranes (LILMs) are engineered by composeing two interpenetrating polyamide nanofilms with biomimetic protrusions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China.
Interfacial polymerization has emerged as a robust method for fabricating task-specific polyamide (PA) membranes. However, the limited microporosity of highly cross-linked PA membranes constrains their effectiveness in gas separation applications. Herein, we introduce an ionic liquid (IL)-regulated interfacial polymerization process to fabricate polyamide nanofilms incorporating kinked tetrakis (4-aminophenyl) methane monomers.
View Article and Find Full Text PDFSci Adv
August 2024
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Fine-tuning microporosity in polymers with a scalable method has great potential for energy-efficient molecular separations. Here, we report a dual-phase molecular engineering approach to prepare microporous polymer nanofilms through interfacial polymerization. By integrating two micropore-generating units such as a water-soluble Tröger's base diamine (TBD) and a contorted spirobifluorene (SBF) motif, the resultant TBD-SBF polyamide shows an unprecedentedly high surface area.
View Article and Find Full Text PDFNano Lett
July 2024
Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 6500034, Japan.
The ion permeability and selectivity of membranes are crucial in nanofluidic behavior, impacting industries ranging from traditional to advanced manufacturing. Herein, we demonstrate the engineering of ion-conductive membranes featuring angstrom-scale ion-transport channels by introducing ionic polyamidoamine (PAMAM) dendrimers for ion separation. The exterior quaternary ammonium-rich structure contributes to significant electrostatic charge exclusion due to enhanced local charge density; the interior protoplasmic channels of PAMAM dendrimer are assembled to provide additional degrees of free volume.
View Article and Find Full Text PDF