98%
921
2 minutes
20
Inverted p-i-n perovskite solar cells (PSCs) are easy to process but need improved interface characteristics with reduced energy loss to prevent efficiency drops when increasing the active photovoltaic area. Here, we report a series of poly ferrocenyl molecules that can modulate the perovskite surface enabling the construction of small- and large-area PSCs. We found that the perovskite-ferrocenyl interaction forms a hybrid complex with enhanced surface coordination strength and activated electronic states, leading to lower interfacial nonradiative recombination and charge transport resistance losses. The resulting PSCs achieve an enhanced efficiency of up to 26.08% for small-area devices and 24.51% for large-area devices (1.0208 cm). Moreover, the large-area PSCs maintain >92% of the initial efficiency after 2000 h of continuous operation at the maximum power point under 1-sun illumination and 65 °C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100013 | PMC |
http://dx.doi.org/10.1021/jacs.4c02220 | DOI Listing |
Small Methods
September 2025
Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Chungcheongnam-do, 31056, Republic of Korea.
NiO is widely used for hole-transporting layers in p-i-n-type perovskite solar cells (PSCs) due to its stability, wide bandgap (≈3.5 eV), and solution processability. However, during solution processing, oxygen exposure can induce non-stoichiometry, forming Ni.
View Article and Find Full Text PDFAdv Mater
August 2025
School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.
Perovskite solar cells (PSCs) suffer from severe nonradiative recombination-induced photovoltage loss, limiting the device overall performance. To address this key issue, an efficient strategy via a dual-site anchoring bridge is developed to engineer the heterointerface between perovskite and PCBM electron transport layer. The resulting reinforced and homogeneous passivation by forming strong dual-site P─O─Pb covalent bonds, effectively decreases perovskite surface defect density.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2025
State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China.
Metal halide perovskites have appeared as a promising semiconductor for high-efficiency and low-cost photovoltaic technologies. However, their performance and long-term stability are dramatically constrained by defects at the surface and grain boundaries of polycrystalline perovskite films formed during the processing. Herein, we propose a defect-targeted passivation strategy using 2-chlorocinnamic acid (2-Cl) to simultaneously enhance the efficiency and stability of perovskite solar cells (PSCs).
View Article and Find Full Text PDFAdv Mater
August 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, PR China.
Developing diverse photovoltaic device architectures is essential not only for improving power conversion efficiency (PCE) but also for enabling seamless integration with other photovoltaic materials in high-performance tandem configurations. While n-i-p architectures have historically dominated the development of PbS colloidal quantum dots (CQDs) solar cells, p-i-n counterparts have significantly lagged behind in efficiency, limiting their potential for further advancement. In this work, the advantage of the surface tunability of CQDs is taken by anchoring the classical self-assembled monolayer (SAM) molecule MeO-2PACz onto PbS CQDs via ligand exchange, forming a PbS-SAM bridging-layer, which is inserted between NiOx/SAM and the CQD active layer, resulting in a NiOx/SAM/PbS-SAM composite hole transporting layer (HTL).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd, Hsinchu 300093, Taiwan.
The two-step sequential deposition technique reported in the inverted p-i-n configuration to fabricate Sn perovskite solar cells fails in the TiO-based n-i-p configuration since the latter aggravates Sn oxidation from the SnI nucleation layer upon pore infiltration. However, ambipolar SnO only promotes hole transport in Sn perovskite. Here, we report Cl-doped SnO (Cl:SnO) with surface functionalities using multifunctional polybenzoxazine (p-Benz) to circumvent the SnO/SnI interfacial redox reaction that would otherwise amplify hole extraction.
View Article and Find Full Text PDF