98%
921
2 minutes
20
The choroid plexus (CP) plays significant roles in secreting cerebrospinal fluid (CSF) and forming circadian rhythms. A monolayer of epithelial cells with tight and adherens junctions of CP forms the blood-CSF barrier to control the movement of substances between the blood and ventricles, as microvessels in the stroma of CP have fenestrations in endothelial cells. CP epithelial cells are equipped with several kinds of transporters and ion channels to transport nutrient substances and secrete CSF. In addition, junctional components also contribute to CSF production as well as blood-CSF barrier formation. However, it remains unclear how junctional components as well as transporters and ion channels contribute to the pathogenesis of neurodegenerative disorders. In this manuscript, recent findings regarding the distribution and significance of transporters, ion channels, and junctional proteins in CP epithelial cells are introduced, and how changes in expression of their epithelial proteins contribute to the pathophysiology of brain disorders are reviewed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11048166 | PMC |
http://dx.doi.org/10.3390/biomedicines12040708 | DOI Listing |
Eur J Pharmacol
September 2025
Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China. Electronic address:
Drug-induced liver injury is a major cause of acute liver failure. Crizotinib is a first-line treatment for patients with cellular-mesenchymal epithelial transition factor (c-MET), anaplastic lymphoma kinase (ALK), and ROS proto-oncogene 1 (ROS1)-positive non-small cell lung cancer. Although some patients treated with crizotinib experience hepatic adverse effects, the underlying mechanisms remain unclear.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
Solid-state lithium-ion batteries have raised considerable attention due to their great potential for the development of new energy storage devices with high energy density and safety. However, enhancing ion conductivity in solid-state electrolytes stands as a pivotal challenge for the large-scale commercialization of next-generation lithium-ion batteries. Here, a high-pressure strategy is reported to achieve the significant enhancement of lithium-ion conductivity by 2 orders of magnitude and the disappearance of grain boundary resistance in polyoxometalate LiPWO electrolyte via an irreversible phase transition from Keggin to bronze structure.
View Article and Find Full Text PDFTranspl Immunol
September 2025
Department of Cardiovascular Medicine, Tianjin Medical University General Hospital, Tianjin City 300000, PR China. Electronic address:
Background: Myocardial ischemia/reperfusion (I/R) injury is a common cause of death. FXYD domain-containing ion transport regulator-5 (Fxyd5) is a type I membrane protein that plays a significant role in mediating cellular functions. However, the expression and function of Fxyd5 in myocardial I/R injury remain unclear.
View Article and Find Full Text PDFNanotechnology
September 2025
Anhui University, No. 111 Jiulong Road, Economic and Technological Development Zone, Hefei City, Anhui Province, China, Hefei, Anhui, 230601, CHINA.
Ni-Fe Prussian blue analogue (PBA) nanorods were successfully synthesized using an innovative one-dimensional molybdate template method, followed by the preparation of Ni-Fe-P nanorods through a phosphating process. These nanorods are meticulously constructed from two metal phosphides, Ni 5 P 4 and FeP. As an anode material for sodium-ion batteries (SIBs), the self-sacrificial template synthesis of Ni-Fe-P nanorods demonstrates remarkable electrochemical performance, achieving a reversible specific capacity of up to 678.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of
High-voltage lithium metal batteries (LMBs) have emerged as ideal candidates for achieving high-energy-density energy storage devices. Notably, high-reactive lithium metal and high-voltage transition metal oxide cathodes require electrolytes with superior electrochemical stability and interfacial compatibility. Herein, a solvent chemistry electrolyte design strategy is proposed that a weakly-solvated fluorinated bis(2,2,2-trifluoroethyl) carbonate (TFEC) was introduced into carbonate electrolyte for enhanced high voltage performance.
View Article and Find Full Text PDF