ROS-Induced Gingival Fibroblast Senescence: Implications in Exacerbating Inflammatory Responses in Periodontal Disease.

Inflammation

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Periodontal disease is the pathological outcome of the overwhelming inflammation in periodontal tissue. Cellular senescence has been associated with chronic inflammation in several diseases. However, the role of cellular senescence in the pathogenesis of periodontal disease remained unclear. This study aimed to investigate the role and the mechanism of cellular senescence in periodontal disease. Using single-cell RNA sequencing, we first found the upregulated level of cellular senescence in fibroblasts and endothelial cells from inflamed gingival tissue. Subsequently, human gingival fibroblasts isolated from healthy and inflamed gingival tissues were labeled as H-GFs and I-GFs, respectively. Compared to H-GFs, I-GFs exhibited a distinct cellular senescence phenotype, including an increased proportion of senescence-associated β-galactosidase (SA-β-gal) positive cells, enlarged cell morphology, and significant upregulation of p16 expression. We further observed increased cellular reactive oxygen species (ROS) activity, mitochondrial ROS, and DNA damage of I-GFs. These phenotypes could be reversed by ROS scavenger NAC, which suggested the cause of cellular senescence in I-GFs. The migration and proliferation assay showed the decreased activity of I-GFs while the gene expression of senescence-associated secretory phenotype (SASP) factors such as IL-1β, IL-6, TGF-β, and IL-8 was all significantly increased. Finally, we found that supernatants of I-GF culture induced more neutrophil extracellular trap (NET) formation and drove macrophage polarization toward the CD86-positive M1 pro-inflammatory phenotype. Altogether, our findings implicate that, in the inflamed gingiva, human gingival fibroblasts acquire a senescent phenotype due to oxidative stress-induced DNA and mitochondrial damage, which in turn activate neutrophils and macrophages through the secretion of SASP factors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-024-02014-5DOI Listing

Publication Analysis

Top Keywords

cellular senescence
24
periodontal disease
16
inflamed gingival
8
human gingival
8
gingival fibroblasts
8
h-gfs i-gfs
8
sasp factors
8
senescence
7
cellular
7
periodontal
5

Similar Publications

STN1 Shields CTC1 From TRIM32-Mediated Ubiquitination to Prevent Cellular Aging.

Aging Cell

September 2025

Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.

The CST (CTC1-STN1-TEN1) complex, a single-stranded DNA (ssDNA) binding complex, is essential for telomere maintenance and genome stability. Depletion of either CTC1 or STN1 results in cellular senescence, while mutations in these components are associated with severe hereditary disorders. In this study, we demonstrate that the direct STN1-CTC1 interaction stabilizes CTC1 by preventing its degradation via TRIM32 mediated ubiquitination.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) can re-active the immune response and induce a complete response in mismatch repair-deficient and microsatellite instability-high (dMMR/MSI-H) colorectal cancer (CRC). However, most CRCs exhibit proficient mismatch repair and microsatellite stable (pMMR/MSS) phenotypes with limited immunotherapy response because of sparse intratumoral CD8 T-lymphocyte infiltration. Cellular senescence has been reported to involve immune cell infiltration through a senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Counteracting lysosome defects alleviates the cellular senescence of Hutchinson-Gilford progeria syndrome.

Sci China Life Sci

September 2025

The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China.

Hutchinson-Gilford progeria syndrome (HGPS) is a rare progeroid disorder, and approximately 90% of cases are caused by LMNA mutation that yields the lamin A/C variant progerin. Progerin is toxic, and its clearance and disruption have positive benefits on HGPS cells and mice and even HGPS patients. However, accelerating progerin clearance is still an unaddressed issue.

View Article and Find Full Text PDF

[Stiffness of scleral fibroblasts and extracellular matrix remodeling in models of cellular senescence].

Zhonghua Yan Ke Za Zhi

September 2025

Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.

To explore the effects of aging on the stiffness of human scleral fibroblast (HSF) and the remodeling of the extracellular matrix. This experimental study was conducted from January 2022 to June 2024. HSFs were cultured, and after cell passage, β-galactosidase staining was conducted.

View Article and Find Full Text PDF

A senescence-responsive nanodrug amplifies radiotherapy efficacy.

J Control Release

September 2025

Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Lane. 833 Zhizaoju Road, Shanghai 200011, China; Department of Biomedical Engineerin

Radiotherapy (RT) is a mainstay of cancer treatment but is limited by tumor resistance and off-target tissue damage, often mediated by therapy-induced cellular senescence. Here, we developed a "one-two punch" nanodrug, Lipo@ABT263@Au, that integrated a senolytic agent (ABT-263) with a gold-shelled liposome for radiosensitization and sustained drug release. High-throughput screening and transcriptomic analysis identified senescence as a key RT-induced vulnerability.

View Article and Find Full Text PDF