98%
921
2 minutes
20
A novel double-network conductive hydrogel based on lithium acetate/gelatin/polyacrylamide (PAAM) was synthesized by heating-cooling and subsequent γ-ray radiation-induced polymerization and cross-linking. Owing to the hydrogen bonding interaction between lithium acetate, physical cross-linked gelatin, and chemical cross-linked PAAM, the resultant hydrogel exhibited high tensile strength (1260 kPa), high ionic conductivity (35.2 mS cm), notch-insensitivity (tensile strength 415 kPa, elongation at break 872% with transverse notch), and extensive strain monitoring range (0.15-800%) under optimum conditions. The lithium acetate/gelatin/polyacrylamide hydrogel strain sensor attached to the skin can sensitively monitor the subtle movements of the human body. The strain sensor based on the resultant hydrogel with transverse notch can still work for 1200 cycles, due to that the covalent-cross-linked PAAm chain bridges the cracks and stabilizes the deformation, while the physical-cross-linked gelatin was unzipped to make the blunting of notch. The conductive hydrogel with high-sensitivity and high stability is expected to be used as materials for the preparation of flexible strain sensors in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c04310 | DOI Listing |
J Colloid Interface Sci
September 2025
Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China. Electronic address:
Ionic conductive hydrogels show promise for flexible sensors in wearables and e-skins, but balancing mechanical strength with high conductivity remains challenging. Herein, a triple-network ionic conductive hydrogel based on poly(acrylic acid) (PAA) was developed, synergistically reinforced by dissolved cellulose (dCel) and aramid nanofibers (ANF), with Al/Zn bimetallic ions serving as the conductive medium. Intriguingly, dCel was in-situ generated using the concentrated Al/Zn bimetallic salt solutions as the cellulose solvent, following the complete dissolution of the pulp fibers driven by the intensive ionic hydration of Al/Zn ions.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Light Chemical Engineering, School of Textiles Science and Engineering; Key Laboratory of Special Protective, Ministry of Education; Jiangnan University, Wuxi 214122, P. R. China.
Polymerizable deep eutectic solvents (PDES) have recently emerged as a class of solvent-free ionically conductive elastomers and are considered among the most feasible candidates for next-generation ionotronic devices. However, the fundamental challenge persists in synergistically combining high mechanical strength, robust adhesion, reliable self-healing capacity, and effective antimicrobial performance within a unified material system capable of fulfilling the rigorous operational demands of next-generation ionotronic devices across multifunctional applications. Inspired by the hierarchical structure of spider silk, HCAG eutectogels composed of acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), and choline chloride (ChCl) were successfully synthesized via a one-step photopolymerization method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States.
Soft conductive composites are significant components of soft and wearable electronics. Existing soft conductive composites encounter difficulties in attaining 10% of copper's electrical conductivity while maintaining high stretchability. In this work, a novel "soft conductive junction" concept is introduced to overcome the conductivity-stretchability trade-off.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
Multifunctional materials that simultaneously possess intrinsic magnetic and superhard properties, particularly those composed of light elements, have a wide range of applications in advanced sensors, shielding, durable devices, and other fields. However, research on the development and understanding of such materials remains limited. In this study, a series of 3D C covalent networks derived from the C fullerene precursor were theoretically designed.
View Article and Find Full Text PDFNano Lett
September 2025
School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China.
Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.
View Article and Find Full Text PDF