98%
921
2 minutes
20
Polyureas have been widely applied in many fields, such as coatings, fibers, foams and dielectric materials. Traditionally, polyureas are prepared from isocyanates, which are highly toxic and harmful to humans and the environment. Synthesis of polyureas via non-isocyanate routes is green, environmentally friendly and sustainable. However, the application of non-isocyanate polyureas is quite restrained due to their brittleness as the result of the lack of a soft segment in their molecular blocks. To address this issue, we have prepared polyester polyureas via an isocyanate-free route and introduced polyester-based soft segments to improve their toughness and endow high impact resistance to the polyureas. In this paper, the soft segments of polyureas were synthesized by the esterification and polycondensation of dodecanedioic acid and 1,4-butanediol. Hard segments of polyureas were synthesized by melt polycondensation of urea and 1,10-diaminodecane without a catalyst or high pressure. A series of polyester polyureas were synthesized by the polycondensation of the soft and hard segments. These synthesized polyester-type polyureas exhibit excellent mechanical and thermal properties. Therefore, they have high potential to substitute traditional polyureas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014397 | PMC |
http://dx.doi.org/10.3390/polym16070993 | DOI Listing |
Small
September 2025
Department State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China.
Metal-organic cage-based crystalline frameworks (MCFs) are distinguished for high porosity and diverse functionality, while their applications are constrained by degradation in wet environments. Inspired by the "fight fire with fire" method in traditional Chinese medicine, trace-water-induced synthesis of armors is proposed to stabilize MCFs. Water at ppm concentration is enriched on the hydrophilic surface of MCFs, and then polymerizes with diisocyanate under the catalysis of MCFs to form hydrophobic shells.
View Article and Find Full Text PDFChem Biodivers
September 2025
College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, China.
β-Adrenergic agonists are employed in the livestock industry to promote the growth of poultry and livestock. However, due to the frequent lack of scientific guidance in medication administration among farmers, issues such as indiscriminate use, misuse, and noncompliance with withdrawal periods have arisen. These practices result in drug residues, triggering food safety concerns and posing a threat to consumer health.
View Article and Find Full Text PDFSmall
August 2025
National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
Effective mitigation of electromagnetic microwave (EMW) pollution requires the development of lightweight, broadband, and high-performance microwave absorbing materials. In this work, a novel FeSnC/Sn/CNF composite is synthesized via a combination of hydrothermal synthesis, electrospinning, and high-temperature carbonization. The optimal sample (FSC3) achieved a minimum reflection loss (RL) of -28.
View Article and Find Full Text PDFNat Commun
August 2025
Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China.
Sterically hindered organogels are promising as coatings, adhesives and structural materials since they can overcome the low strength and poor stability of traditional gel materials. However, limited by the mesh size of the polymer network, it is a significant challenge to entrap small solvents to preparing sterically hindered organogels. Herein, a hypercrosslinked polyurea network with small mesh size (~1.
View Article and Find Full Text PDFBiomaterials
February 2026
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China. Electronic address:
Bacterial biofilm eradication and prevention of re-colonization are critical for effective treatment of biofilm-associated infections. Although significant progress has been made in nanovehicle-assisted antimicrobial platforms for biofilm eradication, strategies to address re-colonization remain underdeveloped. In this study, we constructed a versatile antimicrobial delivery platform based on multimodal interaction polyurea nanogels (MIPN).
View Article and Find Full Text PDF