Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stimulus-responsive polymer-based actuators are extensively studied, with the challenging goal of achieving comprehensive performance metrics that include large output stress and strain, fast response, and versatile actuation modes. The design and fabrication of nanocomposites offer a promising route to integrate the advantages of both polymers and nanoscale fillers, thus ensuring superior performance. Here, it is started from a three-dimensional (3D) porous sponge to fabricate a mutually interpenetrated nanocomposite, in which the embedded carbon nanotube (CNT) network undergoes collective deformation with the shape memory polymer (SMP) matrix during large-degree stretching and releasing, increases junction density with polymer chains and enhances molecular orientation. These features result in substantial improvement of the overall mechanical properties and during thermally actuated contraction, the bulk SMP/CNT composites exhibit output stresses up to 19.5 ± 0.97 MPa and strains up to 69%, accompanied by a rapid response and high energy density, exceeding the majority of recent reports. Furthermore, electrical actuation is also demonstrated via uniform Joule heating across the self-percolated CNT network. Applications such as low-temperature thermal actuated vascular stent and wound dressing are explored. These findings lay out a universal blueprint for developing robust and highly deformable SMP/CNT nanocomposite actuators with broad potential applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202313354DOI Listing

Publication Analysis

Top Keywords

stress strain
8
nanocomposite actuators
8
carbon nanotube
8
cnt network
8
ultra-large stress
4
strain polymer
4
polymer nanocomposite
4
actuators incorporating
4
incorporating mutually-interpenetrated
4
mutually-interpenetrated collective-deformation
4

Similar Publications

Ribosomal protein L22 and ribosomal protein L32 respond to Bacillus velezensis 1 stress through interactions.

Pestic Biochem Physiol

November 2025

Crop Research Institute, Anhui Academy of Agricultural Sciences/Anhui Key Laboratory of Crop Quality Improvement, Hefei, Anhui 230031, China. Electronic address:

Fusarium crown rot (FCR) poses a threat to wheat yield and food safety because of the production of mycotoxins such as deoxynivalenol (DON), which has attracted significant attention in the fields of food science and agriculture. This study found that Bacillus velezensis 1 (BV1) exhibited inhibitory effects on the growth of Fusarium pseudograminearum, with an inhibition rate of 66.67 %.

View Article and Find Full Text PDF

An Asp f2-like protein negatively affects stress tolerance, conidiation and virulence in Metarhizium acridum.

Pestic Biochem Physiol

November 2025

School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China. Electronic add

Metarhizium acridum is a typical filamentous fungus that has been widely used to control grasshoppers, locusts, and crickets. Genetic engineering is a common strategy to enhance its virulence, conidiation, and stress tolerance. Here, we report that the M.

View Article and Find Full Text PDF

Fitness costs and resistance mechanisms to indoxacarb in a near-isogenic strain of Spodoptera exigua (Lepidoptera: Noctuidae).

Pestic Biochem Physiol

November 2025

State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China. Electronic address:

The beet armyworm, Spodoptera exigua has developed resistance to the commonly used insecticide indoxacarb. Understanding fitness costs and resistance mechanisms to indoxacarb in S. exigua is essential for developing effective field resistance management strategies.

View Article and Find Full Text PDF

Tobacco brown spot disease (TBSD), is a severe leaf disease caused by Alternaria alternata, and its management heavily relies on dicarboximide fungicides. This study analyzed procymidone, a dicarboximide fungicide, resistance in 96 strains of A. alternata isolated from tobacco in Guizhou Province.

View Article and Find Full Text PDF

Transcription factor MaAP-1 regulates conidiation patterns via YAP domain binding to the MaPom1 promoter in Metarhizium acridum: Implications for enhancing fungal biocontrol efficiency.

Pestic Biochem Physiol

November 2025

School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China; Nationa

Entomopathogenic fungi such as Metarhizium acridum are pivotal for sustainable pest management, yet the industrial conidial production is hindered by low yields and environmental sensitivity. Transcriptional regulation provides key targets for engineering strain modification. AP-1 transcription factors (TFs) are well-known for their roles in fungal growth, development, conidiation, pathogenicity and stress tolerance across various fungi.

View Article and Find Full Text PDF