98%
921
2 minutes
20
Electrons not only serve as a "reactant" in redox reactions but also play a role in "catalyzing" some chemical processes. Despite the significance and ubiquitousness of electron-induced chemistry, many related scientific issues still await further exploration, among which is the impact of molecular assembly. In this work, microscopic insights into the vital role of molecular assembly in tweaking the electron-induced surface chemistry are unfolded by combined scanning tunneling microscopy and density functional theory studies. It is shown that the selective dissociation of a C-Cl bond in 4,4″-dichloro-1,1':3',1''-terphenyl (DCTP) on Cu(111) can be efficiently triggered by an electron injection via the STM tip into the unoccupied molecular orbital. The DCTP molecules are embedded in different assembly structures, including its self-assembly and coassemblies with Br adatoms. The energy threshold for the C-Cl bond cleavage increases as more Br adatoms stay close to the molecule, indicative of the sensitive response of the electron-induced surface reactivity of the C-Cl bond to the subtle change in the molecular assembly. Such a phenomenon is rationalized by the energy shift of the involved unoccupied molecular orbital of DCTP that is embedded in different assemblies. These findings shed new light on the tuning effect of molecular assembly on electron-induced reactions and introduce an efficient approach to precisely steer surface chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c01623 | DOI Listing |
Pestic Biochem Physiol
November 2025
Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China. Electronic address:
The extensive use of highly toxic and residual pesticides has a significant negative impact on agricultural production and the ecological environment. The development of new green antiviral agents has become a major demand for ensuring the development of green ecological agriculture. Indole alkaloids are widely present in nature and have diverse biological activities.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei, 071001, PR China. Electronic address:
Polysaccharides and polyphenols are major bioactive constituents of plant-based foods, and their efficacy is often modulated by intermolecular interactions. In this study, non-covalent binary complexes of Hovenia dulcis polysaccharides (HDPs) and quercetin were synthesized via molecular self-assembly. Structural characterization confirmed the successful non-covalent association of quercetin onto alcohol-precipitated HDP fractions-HDPs30, HDPs50, and HDPs70.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
September 2025
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Malhaur Station Road, Lucknow 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Malhaur Station Road, Lucknow 226028, India. Electronic address:
Scenedesmus quadricauda, a freshwater microalga, has gained attention for its high lipid accumulation potential. However, information on fatty acid (FA) biosynthesis pathways in Scenedesmus species remains limited. Biomass (1.
View Article and Find Full Text PDFAnal Biochem
September 2025
Vegetable and Fruit Improvement Center and Department of Horticultural Sciences Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA. Electronic address:
Whole plasmid sequencing (WPS) using Nanopore long read sequencing has emerged as a cost-effective alternative for dideoxy sequencing methods. De novo sequence assembly for large plasmids, however, are not always successful and may produce large assembly gaps. Here we streamlined a reference guided alignment of WPS nanopore reads using galaxy platform.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China. Electronic address:
Nanozymes are nanomaterials designed to mimic the catalytic functions of natural enzymes, offering advantages such as enhanced stability, tunability, and scalability. Although precise control over the spatial arrangement of catalytic centers is essential for maximizing nanozyme activity, it remains a fundamental challenge in nanozyme design. Here, we present a supramolecular strategy to achieve molecular-level engineering of catalytic centers by grafting hemin onto monodisperse cellulose oligomers (MCOs).
View Article and Find Full Text PDF