High-Performance Memristive Synapse Composed of Ferroelectric ZnVO-Based Schottky Junction.

Nanomaterials (Basel)

Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In pursuit of realizing neuromorphic computing devices, we demonstrated the high-performance synaptic functions on the top-to-bottom Au/ZnVO/Pt two-terminal ferroelectric Schottky junction (FSJ) device architecture. The active layer of ZnVO exhibited the ferroelectric characteristics because of the broken lattice-translational symmetry, arising from the incorporation of smaller V ions into smaller Zn host lattice sites. The fabricated FSJ devices displayed an asymmetric hysteresis behavior attributed to the ferroelectric polarization-dependent Schottky field-emission rate difference in between positive and negative bias voltage regions. Additionally, it was observed that the magnitude of the on-state current could be systematically controlled by changing either the amplitude or the width of the applied voltage pulses. Owing to these voltage pulse-tunable multi-state memory characteristics, the device revealed diverse synaptic functions such as short-term memory, dynamic range-tunable long-term memory, and versatile rules in spike time-dependent synaptic plasticity. For the pattern-recognition simulation, furthermore, more than 95% accuracy was recorded when using the optimized experimental device parameters. These findings suggest the ZnVO-based FSJ device holds significant promise for application in next-generation brain-inspired neuromorphic computing systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10974313PMC
http://dx.doi.org/10.3390/nano14060506DOI Listing

Publication Analysis

Top Keywords

schottky junction
8
neuromorphic computing
8
synaptic functions
8
fsj device
8
high-performance memristive
4
memristive synapse
4
synapse composed
4
ferroelectric
4
composed ferroelectric
4
ferroelectric znvo-based
4

Similar Publications

Enhanced Giant Ferroelectric Tunneling Electroresistance in 2D Ruddlesden-Popper Oxides.

ACS Nano

September 2025

Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China.

Ferroelectric tunnel junctions (FTJs) based on ferroelectric switching and quantum tunneling effects with thickness down to a few unit cells have been explored for applications of two-dimensional (2D) electronic devices in data storage and neural networks. As a key performance indicator, the enhanced tunneling electrosistance (TER) ratio provides a broader dynamic range for precise modulation of synaptic weights, improving the stability and accuracy of neural networks. Herein, we report an observation of pronounced enhancement in the TER ratio by over 4 orders of magnitude through the fabrication of large-scale heterostructures combining bismuth ferrite with two-dimensional Ruddlesden-Popper oxide BiFeO.

View Article and Find Full Text PDF

Near-infrared (NIR) narrowband photodetectors, featuring high sensitivity, excellent wavelength selectivity, and narrow full width at half-maximum (fwhm), enable efficient detection of specific NIR wavelengths and are widely used in optical communication, environmental monitoring, spectroscopy, and scientific research. In this study, we present a self-powered NIR photodetector based on a silicon nanowire (SiNW) array, exhibiting an ultranarrowband response centered at 1120 nm. The device employs a simple Schottky junction architecture.

View Article and Find Full Text PDF

Platinum/nitrogen-co-doped TiO as photocatalyst and light-free catalytic adsorbent for gaseous formaldehyde.

J Colloid Interface Sci

September 2025

Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Platinum and nitrogen co-doped titanium dioxide (Pt/N-TiO, with 1 wt% Pt and an N/Ti molar ratio of 1) has been synthesized. This Pt/N co-doping strategy creates Schottky junctions, reduces the bandgap energy (3.25 to 2.

View Article and Find Full Text PDF

Bidirectional carrier channels boost photocatalytic hydrogen evolution over NiO/CdMnS/TiCT ternary heterojunction.

J Colloid Interface Sci

September 2025

College of Chemistry & Chemical Engineering, Yan'an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000, China. Electronic address:

Hydrogen evolution reaction (HER) driven by solar energy has attracted considerable attention due to its outstanding efficiency, environmental compatibility, and sustainability. Regrettably, the sluggish progress of the HER and the limitations in charge separation efficiency impede its practical photocatalysis. Herein, a two-step electrostatic self-assembly approach is adopted to construct NiO/CdMnS/TiCT (NO/CMS/TCT) ternary heterojunction with bidirectional carrier channels for boost photogenerated separation and oriented carrier accumulation.

View Article and Find Full Text PDF

Synergistic Coupling of Antenna Effect and Schottky Junction in Tb-Doped Covalent Organic Framework for Enhanced Electrochemiluminescence Sening of Isobutyryl Fentanyl.

Anal Chem

September 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.

Rational design of both mechanistic pathways and material compositions is essential to advance COF-based electrochemiluminescence (ECL) systems. In this study, aggregation-induced emission covalent organic framework (AIE-COF) nanoprobes with excellent ECL performance were developed based on Tb-functionalized covalent organic framework (Tb@A-COF). The Tb@A-COF system demonstrates enhanced ECL performance through synergistic integration of three complementary mechanisms: (1) (4',4',4',4'-(1,2-ethenediylidene)tetrakis [1,1'-biphenyl]-4-carboxaldehyde (ETBC) ligands function as antenna-like sensitizers that amplify luminescence intensity by 14.

View Article and Find Full Text PDF