Ultrasensitive detection of tyrosinase with click reaction-combined dark-field imaging platform.

Talanta

Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Te

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tyrosinase (TYR) is an essential oxidase that is responsible for the regulation of multiple physiological processes and diseases. Achieving the trace and reliable detection of TYR in complex biological samples is of great significance for the diagnosis of TYR-related diseases, but which faces a great challenge. In this study, we developed an ingenious and powerful method for the ultrasensitive detection of TYR by click reaction-combined dark-field microscopy. This method begins with the formation of cuprous ions (Cu) based on the reduction of copper ions (Cu) by ascorbic acid (AA). Subsequently, the formed Cu can catalyze the crosslinking between azide- and alkyne-functionalized gold nanoparticles, causing a significant red-shift in the scattering spectrum. However, AA can chelate with TYR, which inhibits the generation of Cu and subsequent click reaction, thus achieving TYR-controlled scattering spectral shift. The proposed sensing platform shows a good linear detection range of 0.01-0.8 U/L with a low detection limit of 0.003 U/L, which is three orders of magnitude lower than the best performance of TYR sensing probes reported to date. Most importantly, the strategy has the ability to reliably and accurately detect TYR in serum sample, suggesting its potential clinical application in diagnosing TYR-related diseases. This visual sensing platform offers promising prospects for future research in enzymatic analysis and biomedical diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.125931DOI Listing

Publication Analysis

Top Keywords

ultrasensitive detection
8
click reaction-combined
8
reaction-combined dark-field
8
detection tyr
8
tyr-related diseases
8
sensing platform
8
tyr
6
detection tyrosinase
4
tyrosinase click
4
dark-field imaging
4

Similar Publications

Iron-cerium co-doped carbon dots (Fe,Ce-CDs) were synthesized by one-step hydrothermal method using tartaric acid and L-tryptophan as ligands. Fe,Ce-CDs shows excellent peroxidase-like (POD) activity and nitrite (NO) can promote the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to its blue oxidation product (oxTMB) due to the formation of ∙NO free radical. NO further react with oxTMB to form a yellow color via diazotization resulting in the absorbance Change at 450 nm.

View Article and Find Full Text PDF

The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.

View Article and Find Full Text PDF

Engineered plasmonic copper (II) sulfide-wrapped polystyrene nanoparticles for spectroscopic detection of mercury ions.

J Hazard Mater

September 2025

Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:

We report a novel and highly effective UV-Vis sensing platform based on plasmonic copper (II) sulfide-capsulated polystyrene nanoparticles (PS@CuS NPs) for the rapid, ultrasensitive, and selective detection of Hg . The detection mechanism is driven by a specific anion-exchange reaction between Hg and CuS, resulting in the in-situ transformation of plasmonic CuS into non-plasmonic HgS, which induces a distinct and quantifiable shift in UV-Vis absorption. This structural and optical evolution enables the platform to achieve an exceptionally low detection limit of 20 pM within just 5 min, far below most regulatory thresholds, and a wide linear detection range from 20 pM to 30 nM.

View Article and Find Full Text PDF

Application of dispersive solid-phase extraction materials based on nucleic acid aptamer-modified magnetic MIL-100(Fe) in the detection of zearalenone.

J Chromatogr A

August 2025

Department Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou 510006 Guangdong, PR China. Electronic address:

Zearalenone (ZEN), a mycotoxin produced by fungi of the genus Fusarium, is widely present in animal feeds and human foods, posing a serious hazard to human health. Herein, a zearalenone aptamer-functionalized magnetic metal-organic framework material (ZEN-Apt@MMIL-100(Fe)) was constructed and applied for the rapid enrichment of ZEN, coupled with high-performance liquid chromatography (HPLC) for ultrasensitive detection. By a self-templating method, magnetic MIL-100(Fe) was formed by self-assembly of sodium citrate-modified FeO particles as nuclei with homobenzoic acid, which was bonded to amino-modified zearalenone nucleic acid aptamer via amide reaction to realize a specific recognition function.

View Article and Find Full Text PDF

In this study, employing a 2D electrodeposition in situ assembly method, a high-performance HS sensor based on a p-n type CuO-CuFeO heterostructure ordered nanowire arrays was successfully fabricated on silicon substrates. Compared to CuO, CuO-CuFeO nanowire arrays exhibits an ideal interfacial barrier structure and higher initial resistance, with a response to 10 ppm of HS at room temperature (20 ± 3 °C) increased by 225 times and a response time reduced by over 2400 s. The sensor demonstrates exceptional sensitivity (LOD = 10 ppb; response = 234.

View Article and Find Full Text PDF