Engineered plasmonic copper (II) sulfide-wrapped polystyrene nanoparticles for spectroscopic detection of mercury ions.

J Hazard Mater

Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report a novel and highly effective UV-Vis sensing platform based on plasmonic copper (II) sulfide-capsulated polystyrene nanoparticles (PS@CuS NPs) for the rapid, ultrasensitive, and selective detection of Hg . The detection mechanism is driven by a specific anion-exchange reaction between Hg and CuS, resulting in the in-situ transformation of plasmonic CuS into non-plasmonic HgS, which induces a distinct and quantifiable shift in UV-Vis absorption. This structural and optical evolution enables the platform to achieve an exceptionally low detection limit of 20 pM within just 5 min, far below most regulatory thresholds, and a wide linear detection range from 20 pM to 30 nM. Importantly, the engineered PS@CuS NPs exhibit remarkable selectivity, maintaining consistent performance in the presence of common coexisting metal ions such as Pb, Sn, K, Zn, Cd, Mn, Fe, Ni, Co, Mg, and Cu, making it suitable for use in complex environmental matrices. Practical utility was validated through successful detection of Hg in real water samples, including tap and river water, with high recovery rates ranging from 94 % to 105 %. Compared to conventional detection methods, this platform offers a compelling combination of speed, sensitivity, selectivity, and simplicity. Overall, this work represents a significant advancement in UV-Vis-based heavy metal sensing and provides a promising tool for real-time, on-site environmental monitoring of toxic mercury ions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.139769DOI Listing

Publication Analysis

Top Keywords

plasmonic copper
8
polystyrene nanoparticles
8
mercury ions
8
ps@cus nps
8
detection
7
engineered plasmonic
4
copper sulfide-wrapped
4
sulfide-wrapped polystyrene
4
nanoparticles spectroscopic
4
spectroscopic detection
4

Similar Publications

Engineered plasmonic copper (II) sulfide-wrapped polystyrene nanoparticles for spectroscopic detection of mercury ions.

J Hazard Mater

September 2025

Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:

We report a novel and highly effective UV-Vis sensing platform based on plasmonic copper (II) sulfide-capsulated polystyrene nanoparticles (PS@CuS NPs) for the rapid, ultrasensitive, and selective detection of Hg . The detection mechanism is driven by a specific anion-exchange reaction between Hg and CuS, resulting in the in-situ transformation of plasmonic CuS into non-plasmonic HgS, which induces a distinct and quantifiable shift in UV-Vis absorption. This structural and optical evolution enables the platform to achieve an exceptionally low detection limit of 20 pM within just 5 min, far below most regulatory thresholds, and a wide linear detection range from 20 pM to 30 nM.

View Article and Find Full Text PDF

The demand for rapid, field-deployable detection of hazardous substances has intensified the search for plasmonic sensors with both high sensitivity and fabrication simplicity. Conventional approaches to plasmonic substrates, however, often rely on lithographic precision or complex chemistries limiting scalability and reproducibility. Here, a facile, one-step synthesis of vertically aligned 2D nanosheets composed of intergrown CuO/CuO crystallites is presented, fabricated via oxygen plasma discharge on copper substrates.

View Article and Find Full Text PDF

We experimentally demonstrated the fabrication of highly regular laser-induced periodic surface structures (LIPSSs) on an amorphous silicon film coating on a copper substrate. Driven by femtosecond laser-plasmon interference-induced photochemical reactions, we achieved an increase of the LIPSS periodicity from 752 to 870 nm by heating the hybrid film from 298.15 to 368.

View Article and Find Full Text PDF

The integration of luminescent materials with plasmonic nanomaterials holds the potential to give rise to innovative analytical and sensing applications. In this study, novel nano-scaled luminescent Hf-MOF (Hf-nanoMOF) was prepared by the modulator-induced defect approach. Acetate was used as a modulator to preferentially coordinate with metal centers, which inhibited the formation of coordination bond between the metal clusters and 2-aminobenzene-1,4-dicarboxylic acid and limited the Ostwald ripening effect.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) serve as critical biomarkers in exhaled breath for early-stage cancer patients, and their rapid, trace-level detection holds marked implications for cancer screening. Surface-enhanced Raman scattering (SERS) technology demonstrates strong potential for trace VOC gas detection due to its ultra-high sensitivity and immunity to water interference. However, while surface plasmon resonance (SPR)-free semiconductor substrates offer superior spectral stability and selectivity, their sensitivity toward VOC detection remains suboptimal.

View Article and Find Full Text PDF