98%
921
2 minutes
20
Pyrolysis holds immense potential for clean treatment of pulp and paper mill sludge (PPMS), enabling efficient energy and chemical recovery. However, current understanding of PPMS pyrolysis kinetics and product characteristics remains incomplete. This study conducted detailed modeling of pyrolysis kinetics for two typical PPMSs from a wastepaper pulp and paper mill, namely, deinking sludge (PPMS-DS) and sewage sludge (PPMS-SS), and analyzed comprehensively pyrolysis products. The results show that apparent activation energy of PPMS-DS (169.25-226.82 kJ/mol) and PPMS-SS (189.29-411.21 kJ/mol) pyrolysis undergoes significant change, with numerous parallel reactions present. A distributed activation energy model with dual logistic distributions proves to be suitable for modeling thermal decomposition kinetics of both PPMS-DS and PPMS-SS, with coefficient of determination >0.999 and relative root mean square error <1.99 %. High temperature promotes decomposition of solid organic materials in PPMS, and maximum tar yield for both PPMS-DS (53.90 wt%, daf) and PPMS-SS (56.48 wt%, daf) is achieved at around 500 °C. Higher levels of styrene (24.45 % for PPMS-DS and 14.71 % for PPMS-SS) and ethylbenzene (8.61 % for PPMS-DS and 8.33 % for PPMS-SS) are detected in tar and could be used as chemicals. This work shows great potential to propel development of PPMS pyrolysis technology, enabling green and sustainable production in pulp and paper industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171665 | DOI Listing |
J Biomol Struct Dyn
September 2025
Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
Acetylesterase, produced by , plays a crucial role in deacetylating hemicellulose during pulp production. Thermostable variants of this enzyme, although rare, can significantly enhance industrial efficiency by retaining activity at high temperatures. This research aims to design a thermostable variant of acetylesterase from (EC 3.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China. Electronic address:
In this study, the intrinsic properties of jujube were modified through co-fermentation with three non-Saccharomyces yeasts and Lactiplantibacillus plantarum to solve the stickiness and caking problems of jujube powder. Results showed that sugar content in jujube pulp was significantly reduced through microbial metabolism. Notably, sucrose, the major contributor to stickiness, was reduced from over 15.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Plant Fiber Material Science Research Center, State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou, 510640, China.
The development of cellulose-based electromagnetic shielding materials is critical for the advancement of sustainable, lightweight, and flexible electronic devices. Most high-performance composites rely on nanocellulose, which is expensive and energy-intensive to produce. In this work, we employ chemically modified conventional eucalyptus pulp fibers (non-nano) to fabricate Janus-structured cellulose/MXene composite papers.
View Article and Find Full Text PDFBiomacromolecules
September 2025
Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, Stockholm 10044, Sweden.
Lignin, traditionally considered a low-value byproduct of the pulp and paper industry, has gained significant attention in recent years as a sustainable precursor for the development of functional materials. This paradigm shift is driven by recent studies exploring the structure-property-performance relationships of lignin-based functional materials, which have provided valuable insights for selective chemical functionalization or pretreatment of lignin. Furthermore, the use of complementary analytical techniques has helped to shed light into lignin's complex and heterogeneous structure, opening new avenues for chemical modification.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China. Electronic address:
Background: While paper-based colorimetric assays have seen significant progress in recent years, persistent challenges including the coffee-ring effect and infiltration effect continue to affect the color uniformity of detection results, leading to decreased sensitivity and accuracy of the detection. Recent advancements in suppressing these two effects mainly depend on chemical modification of cellulose fibers or application of specific functional coatings. However, the former's complex procedures impede large-scale implementation, while the latter's non-cellulosic additives risk unpredictable interactions with analytes or interference in colorimetric reactions.
View Article and Find Full Text PDF