98%
921
2 minutes
20
Objective: To investigate the inhibitory mechanisms of ginsenoside F1 on hydrogen peroxide induced cholesterol metabolism disorder and oxidative stress in HepG2 cells.
Methods: 1, 1-diphenyl-2-picrylhydrazyl(DPPH) and oxygen radical absorbance capacity(ORAC) tests were used to detect the scavenging effect of ginsenoside F1 on nitrogen and oxygen free radicals. HepG2 cells were treated with 400 μmol/L hydrogen peroxide and pretreated with 10, 20 and 40 μmol/L ginsenoside F1. Mitochondrial membrane potential(MMP) and total cholesterol levels were detected by JC-1 method and cholesterol kit, respectively. The protein expression levels of sterol-regulatory element binding proteins(SREBP2)and 3-hydroxy-3-methylglutaryl coenzyme A reductase(HMGCR) in cholesterol synthesis pathway were detected by Western blot.
Results: The DPPH clearance rate of ginsenoside F1 was much lower than that of 6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid(Trolox), but the ORAC capability of ginsenoside F1 was stronger, which was comparable to Trolox. The MMP and protein expression of SREBP2 were significantly decreased in injured group(P<0.05). The cholesterol and protein expression of HMGCR were significantly increased(P<0.05). Whereas, compared with the injured group, the MMP and protein expression of SREBP2 were significantly increased after 10, 20 and 40 μmol/L ginsenoside F1 pretreatment of injured cells(P<0.05). The cholesterol level and protein expression of HMGCR were significantly lower than injured group with concentration-dependent decreases(P<0.05).
Conclusion: Ginsenoside F1 can protect against hydrogen peroxide induced oxidative stress in HepG2 cells by inhibiting oxygen free radicals and protecting mitochondria. And its mechanism may be related to the intervention of SREBP2/HMGCR pathway in regulating cellular cholesterol anabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19813/j.cnki.weishengyanjiu.2024.01.009 | DOI Listing |
J Pathol Transl Med
September 2025
Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
Background: C-C motif chemokine ligand 3 (CCL3) is a crucial chemokine that plays a fundamental role in the immune microenvironment and is closely linked to the development of various cancers. Despite its importance, there is limited research regarding the expression and function of CCL3 in nasopharyngeal carcinoma (NPC). Therefore, this study seeks to examine the expression of CCL3 and assess its clinical significance in NPC using bioinformatics analysis and experiments.
View Article and Find Full Text PDFJ Pathol Transl Med
September 2025
Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
Background: This study aimed to reclassify a subset of poorly differentiated salivary gland carcinoma that do not conform to any entities of the current World Health Organization (WHO) classification into the category of undifferentiated carcinoma (UDC) because they lack specific histologic differentiation or immunophenotype.
Methods: Cases of salivary gland carcinomas from Asan Medical Center (2002-2020) that did not fit any existing WHO classification criteria and were diagnosed as poorly differentiated carcinoma, high-grade carcinoma, or UDC, were retrospectively reviewed. Immunohistochemical (IHC) staining for p40, neuroendocrine markers, androgen receptor (AR), and gross cystic disease fluid protein 15 (GCDFP-15) and Epstein-Barr virus (EBV) in situ hybridization (ISH) were performed.
J Pathol Transl Med
September 2025
Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.
Central nervous system tumors with BCL6 corepressor (BCOR) internal tandem duplications (ITDs) constitute a rare, recently characterized pediatric neoplasm with distinct molecular and histopathological features. To date, 69 cases have been documented in the literature, including our institutional case. These neoplasms predominantly occur in young children, with the cerebellum representing the most frequent anatomical location.
View Article and Find Full Text PDFMacrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.
View Article and Find Full Text PDFCell Physiol Biochem
September 2025
Department of General Practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China, E-Mail:
Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.
View Article and Find Full Text PDF