98%
921
2 minutes
20
The detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) is crucial for understanding and managing various illnesses. In this research, Pt@g-CN nanoparticles were synthesized via hydrothermal method and combined with N-doped carbon nanotubes (N-CNTs). The Pt@g-CN/N-CNTs-modified glassy carbon (GC) electrode was fabricated as an electrochemical sensor for the determination of AA, DA, and UA. The linear response range of AA, DA, and UA in the optimal condition was 100-3,000 μM, 1-100 μM, and 2-215 μM boasting a low detection limit (S/N = 3) of 29.44 μM (AA), 0.21 μM (UA), and 2.99 μM (DA), respectively. Additionally, the recoveries of AA, DA, and UA in serum sample were 100.4%-106.7%. These results corroborate the feasibility of the proposed method for the simultaneous, sensitive, and reliable detection of AA, DA, and UA. Our Pt@g-CN/N-CNTs/GC electrode can provide a potential strategy for disease diagnosis and health monitoring in clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907839 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.109241 | DOI Listing |
ACS Omega
September 2025
Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
Nanozymes, which possess inherent catalytic properties that are akin to those of natural enzymes, have emerged as promising candidates for biomedical innovation. In this work, we successfully synthesize a Co Cu S nanoflower by the solvothermal and soaking method. Fortunately, through cobalt doping and microstructure design, its morphological structure and active sites have been optimized and adjusted, thus bestowing the Co Cu S nanoflower enhanced peroxidase-mimetic activity.
View Article and Find Full Text PDFBiosens Bioelectron
August 2025
Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, via Bitonto 139, 00133, Rome, Italy. Electronic address:
Phytic acid is a phosphorylated derivative of myo-inositol that is ubiquitous in plants and serves as the primary storage form of phosphorus. In human nutrition, phytic acid is considered an anti-nutrient because it chelates essential minerals, including calcium, iron, and zinc. This binding action reduces the bioavailability of these metals, highlighting the importance of monitoring phytic acid in food.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:
Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.
View Article and Find Full Text PDFAnal Chem
September 2025
Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
Current colorimetric sensing arrays for antioxidant detection often struggle with discrimination due to cross-reactive signals from individual nanozymes. These signals are typically modulated by external factors such as pH or chromogenic substrates, offering limited kinetic and mechanistic diversity. To overcome this, we present a novel triple-channel colorimetric sensing array utilizing two distinct single-atom nanozymes (Cu SA and Fe SA) and one dual-atom nanozyme (CuFe DA).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
Department of Combination of Mongolian Medicine and Western Medicine Stomatology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao 028043, China. Electronic address:
To achieve non-invasive early diagnosis and severity monitoring of periodontal disease, this study employed silver nanoparticles as a surface-enhanced Raman Scattering (SERS) substrate for the detection and analysis of salivary SERS spectra from a control group (periodontal health group) and groups with periodontal disease of varying severities (including gingivitis, as well as mild, moderate, and severe periodontitis). The results demonstrated significant differences in salivary SERS spectra between the control group and the gingivitis group, between the control group and the mild periodontitis group, and between the control group and groups with periodontal disease of different severities. Subsequently, based on the dual screening criteria of Variable Importance in Projection (VIP) ≥ 1 and P < 0.
View Article and Find Full Text PDF