98%
921
2 minutes
20
Legumes have the ability to establish a nitrogen-fixing symbiosis with soil rhizobia that they house in specific organs, the nodules. In most rhizobium-legume interactions, nodulation occurs on the root. However, certain tropical legumes growing in wetlands possess a unique trait: the capacity to form rhizobia-harbouring nodules on the stem. Despite the originality of the stem nodulation process, its occurrence and diversity in waterlogging-tolerant legumes remains underexplored, impeding a comprehensive analysis of its genetics and biology. Here, we aimed at filling this gap by surveying stem nodulation in legume species-rich wetlands of Madagascar. Stem nodulation was readily observed in eight hydrophytic species of the legume genera, Aeschynomene and Sesbania, for which significant variations in stem nodule density and morphology was documented. Among these species, A. evenia, which is used as genetic model to study the rhizobial symbiosis, was found to be frequently stem-nodulated. Two other Aeschynomene species, A. cristata and A. uniflora, were evidenced to display a profuse stem-nodulation as occurs in S. rostrata. These findings extend our knowledge on legumes species that are endowed with stem nodulation and further indicate that A. evenia, A. cristata, A. uniflora and S. rostrata are of special interest for the study of stem nodulation. As such, these legume species represent opportunities to investigate different modalities of the nitrogen-fixing symbiosis and this knowledge could provide cues for the engineering of nitrogen-fixation in non-legume crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904833 | PMC |
http://dx.doi.org/10.1038/s41598-024-55247-7 | DOI Listing |
In Vitro Cell Dev Biol Anim
September 2025
Department of Stomatology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing, 100142, PR China.
TP53TG1 is a long non-coding RNA related to the TP53 gene, which plays an important role in various biological processes such as tumorigenesis, cell cycle regulation, and DNA damage repair. In recent years, researchers have begun to explore the role of TP53TG1 in dental pulp biology, especially its potential impact on pulpitis and other pulp-related diseases. However, the role of TP53TG1 in human dental pulp stem cells (hDPSCs) remains unclear.
View Article and Find Full Text PDFEur J Dent
September 2025
Doctoral Program, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia.
Although platelet-rich plasma (PRP) has demonstrated considerable regenerative potential in regenerative endodontic treatment, its clinical efficacy may be limited by the rapid degradation of its bioactive components, leading to inconsistent outcomes. To overcome this challenge, the present study explores the use of nano-sized exosomes derived from PRP-a novel designated as PRP exosomes (PRP-Exo)-as a more stable and targeted biomolecular delivery system to promote odontogenic differentiation within the dentin-pulp complex. The primary objective is to investigate the expression of key odontogenic markers, transforming growth factor-β1 (TGF-β1) and Dentin Sialophosphoprotein (DSPP), in human dental pulp stem cells (hDPSCs) following PRP-Exo treatment.
View Article and Find Full Text PDFJ Integr Plant Biol
September 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Center for Soybean Improvement, National Innovation Platform for Soybean Breeding and Industry-Education Integration, Key Laboratory for Biology and Genetic Improvement o
Soybean is an important source of oil, protein, and feed. However, its yield is far below that of major cereal crops. The green revolution increased the yield of cereal crops partially through high-density planting of lodging-resistant semi-dwarf varieties, but required more nitrogen fertilizers, posing an environmental threat.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2025
School of Sports Health, Shenyang Sport University, Shenyang, China.
Integrin α5β1 is a key signaling protein between cells and the extracellular matrix. It plays crucial roles in biological processes such as cell adhesion, migration, and differentiation. Recent studies have shown that integrin α5β1 is significantly involved in bone formation and related diseases.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China.
Adipose-derived mesenchymal stem cells (ADSCs) are more accessible than bone marrow mesenchymal stromal cells but have limited osteogenic differentiation capabilities in bone tissue engineering. Cell-free fat extract (CEFFE) from adipose tissue shows promise in enhancing the osteogenesis of ADSCs. This study aimed to investigate the impact of CEFFE on ADSCs and its role in promoting ADSC osteogenic activity both in vitro and in vivo.
View Article and Find Full Text PDF