98%
921
2 minutes
20
Objective: To develop and evaluate a deep learning model based on chest CT that achieves favorable performance on opportunistic osteoporosis screening using the lumbar 1 + lumbar 2 vertebral bodies fusion feature images, and explore the feasibility and effectiveness of the model based on the lumbar 1 vertebral body alone.
Materials And Methods: The chest CT images of 1048 health check subjects from January 2021 to June were retrospectively collected as the internal dataset (the segmentation model: 548 for training, 100 for tuning and 400 for test. The classification model: 530 for training, 100 for validation and 418 for test set). The subjects were divided into three categories according to the quantitative CT measurements, namely, normal, osteopenia and osteoporosis. First, a deep learning-based segmentation model was constructed, and the dice similarity coefficient(DSC) was used to compare the consistency between the model and manual labelling. Then, two classification models were established, namely, (i) model 1 (fusion feature construction of lumbar vertebral bodies 1 and 2) and (ii) model 2 (feature construction of lumbar 1 alone). Receiver operating characteristic curves were used to evaluate the diagnostic efficacy of the models, and the Delong test was used to compare the areas under the curve.
Results: When the number of images in the training set was 300, the DSC value was 0.951 ± 0.030 in the test set. The results showed that the model 1 diagnosing normal, osteopenia and osteoporosis achieved an AUC of 0.990, 0.952 and 0.980; the model 2 diagnosing normal, osteopenia and osteoporosis achieved an AUC of 0.983, 0.940 and 0.978. The Delong test showed that there was no significant difference in area under the curve (AUC) values between the osteopenia group and osteoporosis group (P = 0.210, 0.546), while the AUC value of normal model 2 was higher than that of model 1 (0.990 vs. 0.983, P = 0.033).
Conclusion: This study proposed a chest CT deep learning model that achieves favorable performance on opportunistic osteoporosis screening using the lumbar 1 + lumbar 2 vertebral bodies fusion feature images. We further constructed the comparable model based on the lumbar 1 vertebra alone which can shorten the scan length, reduce the radiation dose received by patients, and reduce the training cost of technologists.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898023 | PMC |
http://dx.doi.org/10.1186/s12891-024-07297-1 | DOI Listing |
Protein Cell
August 2025
Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.
Cardiovascular disease (CVD) research is hindered by limited comprehensive analyses of plasma proteome across disease subtypes. Here, we systematically investigated the associations between plasma proteins and cardiovascular outcomes in 53,026 UK Biobank participants over a 14-year follow-up. Association analyses identified 3,089 significant associations involving 892 unique protein analytes across 13 CVD outcomes.
View Article and Find Full Text PDFJ Mass Spectrom
October 2025
Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Rome, Italy.
Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
Introduction: We compared and measured alignment between the Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR) standard used by electronic health records (EHRs), the Clinical Data Interchange Standards Consortium (CDISC) standards used by industry, and the Uniform Data Set (UDS) used by the Alzheimer's Disease Research Centers (ADRCs).
Methods: The ADRC UDS, consisting of 5959 data elements across eleven packets, was mapped to FHIR and CDISC standards by two independent mappers, with discrepancies adjudicated by experts.
Results: Forty-five percent of the 5959 UDS data elements mapped to the FHIR standard, indicating possible electronic obtainment from EHRs.
Mol Ecol
September 2025
State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.
Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).
View Article and Find Full Text PDF