Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Effective prevention of recurrent kidney stone disease requires the understanding of the mechanisms of its formation. Numerous observations have demonstrated that a large number of pathological calcium oxalate kidney stones develop on an apatitic calcium phosphate deposit, known as Randall's plaque. In an attempt to understand the role of the inorganic hydroxyapatite phase in the formation and habits of calcium oxalates, we confined their growth under dynamic physicochemical and flow conditions in a reversible microfluidic channel coated with hydroxyapatite. Using multi-scale characterization techniques including scanning electron and Raman microscopy, we showed the successful formation of carbonated hydroxyapatite as found in Randall's plaque. This was possible due to a new two-step flow seed-mediated growth strategy which allowed us to coat the channel with carbonated hydroxyapatite. Precipitation of calcium oxalates under laminar flow from supersaturated solutions of oxalate and calcium ions showed that the formation of crystals is a substrate and time dependent complex process where diffusion of oxalate ions to the surface of carbonated hydroxyapatite and the solubility of the latter are among the most important steps for the formation of calcium oxalate crystals. Indeed when an oxalate solution was flushed for 24 h, dissolution of the apatite layer and formation of calcium carbonate calcite crystals occurred which seems to promote calcium oxalate crystal formation. Such a growth route has never been observed in the context of kidney stones. Under our experimental conditions, our results do not show any direct promoting role of carbonated hydroxyapatite in the formation of calcium oxalate crystals, consolidating therefore the important role that macromolecules can play in the process of nucleation and growth of calcium oxalate crystals on Randall's plaque.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3lc01050cDOI Listing

Publication Analysis

Top Keywords

calcium oxalate
24
randall's plaque
16
carbonated hydroxyapatite
16
formation calcium
12
oxalate crystals
12
calcium
10
oxalate
9
formation
9
oxalate crystal
8
microfluidic channel
8

Similar Publications

Kidney stones have a high recurrence rate-10% within 5 years and 50% within 10. Crystalluria reflects the urinary physicochemical environment and may serve as a recurrence marker, but key crystals like brushite are rarely detected under ambient conditions. This study aimed to identify novel recurrence markers by inducing crystallization through urine cooling and analyzing crystal composition.

View Article and Find Full Text PDF

Background: Kidney stone formation is driven by an imbalance between lithogenic substances and crystallization inhibitors. Current guidelines recommend a 24-h urine collection in patients with kidney stone disease to assess the risk of stone formation and monitor therapy compliance. However, real-world data on adherence to these guidelines remain limited and outdated.

View Article and Find Full Text PDF

Therapeutic potential of Desmodium styracifolium polysaccharide in attenuating nano-calcium oxalate induced renal injury and fibrosis.

Commun Biol

September 2025

Guangdong Provincial Key Laboratory of Urological Diseases, Department of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guan

Calcium salt deposition in the kidney induces epithelial-to-mesenchymal transition (EMT) in renal tubular epithelial cells, which is the pathological basis for the progression to renal fibrosis in patients with renal stones; however, effective drugs to prevent and treat this disease have not been adequately investigated. In this study, we conducted a comprehensive analysis of fibrosis-related core genes by utilizing bioinformatics on RNA-seq data, along with web database information. Additionally, we designed both in vivo and in vitro experiments to elucidate the mechanisms and signaling pathways through which Desmodium styracifolium polysaccharides (Ds) mitigate renal fibrosis induced by nephrolithiasis.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought to light unexpected complications beyond respiratory illness, including effects on kidney function and a potential link to kidney stone disease (KSD). This review proposes a novel framework connecting COVID-19-induced epigenetic reprogramming to disruptions in mitochondrial sulfur metabolism and the pathogenesis of kidney stones. We examine how SARS-CoV-2 interferes with host methylation processes, leading to elevated homocysteine (Hcy) levels and impairment of the trans-sulfuration pathway mechanisms particularly relevant in metabolic disorders such as homocystinuria.

View Article and Find Full Text PDF