Line-based iterative geometric calibration method for a tomosynthesis system.

Med Phys

Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: A next generation tomosynthesis (NGT) system, capable of two-dimensional source motion, detector motion in the perpendicular direction, and magnification tomosynthesis, was constructed to investigate different acquisition geometries. Existing position-based geometric calibration methods proved ineffective when applied to the NGT geometries.

Purpose: A line-based iterative calibration method is developed to perform accurate geometric calibration for the NGT system.

Methods: The proposed method calculates the system geometry through virtual line segments created by pairs of fiducials within a calibration phantom, by minimizing the error between the line equations computed from the true and estimated fiducial projection pairs. It further attempts to correct the 3D fiducial locations based on the initial geometric calibration. The method's performance was assessed via simulation and experimental setups with four distinct NGT geometries: X, T, XZ, and TZ. The X geometry resembles a conventional DBT acquisition along the chest wall. The T geometry forms a "T"-shaped source path in mediolateral (ML) and posteroanterior (PA) directions. A descending detector motion is added to both X and T geometries to form the XZ and TZ geometries, respectively. Simulation studies were conducted to assess the robustness of the method to geometric perturbations and inaccuracies in fiducial locations. Experimental studies were performed to assess the impact of phantom magnification and the performance of the proposed method for various geometries, compared to the traditional position-based method. Star patterns were evaluated for both qualitative and quantitative analyses; the Fourier spectral distortions (FSDs) graphs and the contrast transfer function (CTF) were extracted. The limit of spatial resolution (LSR) was measured at 5% modulation of the CTF.

Results: The proposed method presented is highly robust to geometric perturbation and fiducial inaccuracies. After the line-based iterative method, the mean distance between the true and estimated fiducial projections was [X, T, XZ, TZ]: [0.01, 0.01, 0.02, 0.01] mm. The impact of phantom magnification was observed; a contact-mode acquisition of a calibration phantom successfully provided an accurate geometry for 1.85× magnification images of a star pattern, with the X geometry. The FSD graphs for the contact-mode T geometry acquisition presented evidence of super-resolution, with the LSR of [0°-quadrant: 8.57, 90°-quadrant: 8.47] lp/mm. Finally, a contact-mode XZ geometry acquisition and a 1.50× magnification TZ geometry acquisition were reconstructed with three calibration methods-position-based, line-based, and iterative line-based. As more advanced methods are applied, the CTF becomes more isotropic, the FSD graphs demonstrate less spectral leakage as super-resolution is achieved, and the degree of blurring artifacts reduces significantly.

Conclusions: This study introduces a robust calibration method tailored to the unique requirements of advanced tomosynthesis systems. By employing virtual line segments and iterative techniques, we ensure accurate geometric calibration while mitigating the limitations posed by the complex acquisition geometries of the NGT system. Our method's ability to handle various NGT configurations and its tolerance to fiducial misalignment make it a superior choice compared to traditional calibration techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000589PMC
http://dx.doi.org/10.1002/mp.16981DOI Listing

Publication Analysis

Top Keywords

geometric calibration
20
line-based iterative
16
calibration method
12
proposed method
12
geometry acquisition
12
calibration
10
method
9
ngt system
8
detector motion
8
acquisition geometries
8

Similar Publications

Kinematic calibration is essential for improving the absolute accuracy of parallel robots, but conventional identification methods often struggle with the complex, non-linear coupling of their numerous geometric error parameters. This can lead to convergence to local rather than global optima, limiting the effectiveness of the calibration. To address this challenge, this paper proposes a novel self-calibration methodology based on a global optimization strategy.

View Article and Find Full Text PDF

Ultrasound probe calibration is crucial for precise spatial mapping in ultrasound-guided surgical navigation and free-hand 3D ultrasound imaging as it establishes the rigid-body transformation between the ultrasound image plane and an external tracking sensor. However, the existing methods often rely on manual feature point selection and exhibit limited robustness to outliers, resulting in reduced accuracy, reproducibility, and efficiency. To address these limitations, we propose a fully automated calibration framework that leverages the geometric priors of an N-wire phantom to achieve reliable recognition.

View Article and Find Full Text PDF

A Blur Feature-Guided Cascaded Calibration Method for Plenoptic Cameras.

Sensors (Basel)

August 2025

College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.

Accurate and robust calibration of multifocal plenoptic cameras is essential for high-precision 3D light field reconstruction. In this work, we propose a blur feature-guided cascaded calibration for the plenoptic camera. First, white images at different aperture values are used to estimate the high-confidence center point and radius of micro-images, and the defocus theory is used to estimate the initial values of the intrinsic parameters.

View Article and Find Full Text PDF

Self-calibrating and dual-slope measurements have been used in the field of diffuse optics for robust assessment of absolute values or temporal changes in the optical properties of highly scattering media and biological tissue. These measurements employ optical probes with a minimum of two source positions and a minimum of two detector positions. This work focuses on a quantitative analysis of the impact of errors in these source and detector positions on the assessment of optical properties.

View Article and Find Full Text PDF

Large-sized components with numerous small key local features are essential in advanced manufacturing. Achieving high-precision quality control necessitates accurate and highly efficient three-dimensional (3D) measurement techniques. A flexible measurement system integrating a fringe-projection-based 3D scanner with an industrial robot is developed to enable the rapid measurement of large object surfaces.

View Article and Find Full Text PDF