Publications by authors named "Andrew D A Maidment"

JMI guest editors present a diverse collection of research and perspectives in a special issue celebrating the past, present, and future of digital tomosynthesisan imaging modality that continues to grow in both clinical relevance and technical sophistication.

View Article and Find Full Text PDF

Purpose: Breast cancer risk depends on an accurate assessment of breast density due to lesion masking. Although governed by standardized guidelines, radiologist assessment of breast density is still highly variable. Automated breast density assessment tools leverage deep learning but are limited by model robustness and interpretability.

View Article and Find Full Text PDF

Background Parenchymal phenotypes reflect the intrinsic heterogeneity of both tissue structure and distribution on mammograms. Purpose To define parenchymal phenotypes on the basis of radiomic texture features derived from full-field digital mammography (FFDM) in breast screening populations and assess associations of parenchymal phenotypes with future risk of breast cancer and masking (false-negative [FN] findings or interval cancers), beyond breast density, and by race and ethnicity Materials and Methods A two-stage study design included a retrospective cross-sectional study of 30 000 randomly selected women with four-view FFDM (mean age, 57.4 years) and a nested case-control study of 1055 women with invasive breast cancer (151 Black and 893 White women) matched to 2764 women without breast cancer (411 Black and 2345 White women) (mean age, 60.

View Article and Find Full Text PDF

Breast cancer is one of the most common types of cancer, however, preventive screening has contributed to a significant reduction in mortality over the past four decades. The first-line screening methods for breast cancer, such as mammography and tomosynthesis, are x-ray-based modalities. Unfortunately, their cancer detection rates are low in patients with dense breasts.

View Article and Find Full Text PDF

Background: Virtual imaging trials (VIT) have made significant advancements through the development of realistic human anatomy models, scanner-specific simulations, and virtual image interpretation. To promote VIT widespread adoption in the medical imaging community, it is important to develop methods that unify and facilitate the use of VITs, ensuring their reliable application across various imaging studies.  PURPOSE: We developed a containerized environment to enhance collaboration and interoperability across VIT platforms.

View Article and Find Full Text PDF

Purpose: Tomosynthesis is a limited-angle multi-projection method that was conceived to address a significant limitation of conventional single-projection x-ray imaging: the overlap of structures in an image. We trace the historical evolution of tomosynthesis.

Approach: Relevant papers are discussed including descriptions of technical advances and clinical applications.

View Article and Find Full Text PDF

Photon-counting mammography is an emerging modality that allows for spectral imaging and provides a differentiation of material compositions. The development of photon-counting mammography-specific contrast agents has yet to be explored. In this study, the contrast, sensitivity, and organ dose between silver sulfide nanoparticles (AgS-NPs) and a clinically approved iodinated agent (iopamidol) were investigated using a contrast-embedded gradient ramp phantom and a prototype scanner.

View Article and Find Full Text PDF
Article Synopsis
  • Contrast-enhanced dual-energy mammography (DEM) can detect tumors better in dense breast tissue than standard mammography, but traditional iodine-based contrast agents have significant limitations, including use restrictions and high doses.* -
  • The study introduces ultrasmall molybdenum disulfide nanoparticles (MoS NPs) that are biocompatible and produce higher image contrast in DEM compared to conventional contrast agents like iopamidol.* -
  • MoS NPs also show rapid elimination from the body, reducing concerns about long-term toxicity, which suggests they could effectively serve as dual-modality contrast agents for both DEM and CT imaging.*
View Article and Find Full Text PDF

In this study, we investigate the performance of advanced 2D acquisition geometries - Pentagon and T-shaped - in digital breast tomosynthesis (DBT) and compare them against the conventional 1D geometry. Unlike the conventional approach, our proposed 2D geometries also incorporate anterior projections away from the chest wall. Implemented on the Next-Generation Tomosynthesis (NGT) prototype developed by X-ray Physics Lab (XPL), UPenn, we utilized various phantoms to compare three geometries: a Defrise slab phantom with alternating plastic slabs to study low-frequency modulation; a Checkerboard breast phantom (a 2D adaptation of the Defrise phantom design) to study the ability to reconstruct the fine features of the checkerboard squares; and the 360° Star-pattern phantom to assess aliasing and compute the Fourier-spectral distortion (FSD) metric that assesses spectral leakage and the contrast transfer function.

View Article and Find Full Text PDF

Background: A next generation tomosynthesis (NGT) system, capable of two-dimensional source motion, detector motion in the perpendicular direction, and magnification tomosynthesis, was constructed to investigate different acquisition geometries. Existing position-based geometric calibration methods proved ineffective when applied to the NGT geometries.

Purpose: A line-based iterative calibration method is developed to perform accurate geometric calibration for the NGT system.

View Article and Find Full Text PDF

Our lab at the University of Pennsylvania (UPenn) is investigating novel designs for digital breast tomosynthesis. We built a next-generation tomosynthesis system with a non-isocentric geometry (superior-to-inferior detector motion). This paper examines four metrics of image quality affected by this design.

View Article and Find Full Text PDF

Objectives: A virtual clinical trial (VCT) method is proposed to determine the limit of calcification detection in tomosynthesis.

Methods: Breast anatomy, focal findings, image acquisition, and interpretation (n = 14 readers) were simulated using screening data (n = 660 patients). Calcifications (0.

View Article and Find Full Text PDF

Tomosynthesis acquires projections over a limited angular range, resulting in anisotropic sampling in the Fourier domain. The volume of the sampled space is therefore spatially dependent; different Fourier components are sampled for the same object, depending upon where the object is located relative to the system origin. A next-generation tomosynthesis (NGT) system was developed at the University of Pennsylvania to increase the spatial isotropy in DBT, by incorporating additional system motions.

View Article and Find Full Text PDF

Digital breast tomosynthesis (DBT) reconstructions introduce out-of-plane artifacts and false-tissue boundaries impacting the dense/adipose and breast outline (convex hull) segmentations. A virtual clinical trial method was proposed to segment both the breast tissues and the breast outline in DBT reconstructions. The DBT images of a representative population were simulated using three acquisition geometries: a left-right scan (conventional, I), a two-directional scan in the shape of a "T" (II), and an extra-wide range (XWR, III) left-right scan at a six-times higher dose than I.

View Article and Find Full Text PDF

In breast tomosynthesis, multiple low-dose projections are acquired in a single scanning direction over a limited angular range to produce cross-sectional planes through the breast for three-dimensional imaging interpretation. We built a next-generation tomosynthesis system capable of multidirectional source motion with the intent to customize scanning motions around "suspicious findings". Customized acquisitions can improve the image quality in areas that require increased scrutiny, such as breast cancers, architectural distortions, and dense clusters.

View Article and Find Full Text PDF

The use of nanoparticles in the biomedical field has gained much attention due to their applications in biomedical imaging, drug delivery, and therapeutics. Silver telluride nanoparticles (AgTe NPs) have been recently shown to be highly effective computed tomography (CT) and dual-energy mammography contrast agents with good stability and biocompatibility, as well as to have potential for many other biomedical purposes. Despite their numerous advantageous properties for diagnosis and treatment of disease, the clinical translation of AgTe NPs is dependent on achieving high levels of excretion, a limitation for many nanoparticle types.

View Article and Find Full Text PDF

Our lab has built a next-generation tomosynthesis (NGT) system utilizing scanning motions with more degrees of freedom than clinical digital breast tomosynthesis systems. We are working toward designing scanning motions that are customized around the locations of suspicious findings. The first step in this direction is to demonstrate that these findings can be detected with a single projection image, which can guide the remainder of the scan.

View Article and Find Full Text PDF

X-ray imaging results in inhomogeneous irradiation of the detector and distortion of structures in the periphery of the image; yet the spatial dependency of tomosynthesis image-quality metrics has not been extensively investigated. In this study, we use virtual clinical trials to quantify the spatial dependency of lesion detectability in our lab's next-generation tomosynthesis (NGT) system. Two geometries were analyzed: a conventional geometry with mediolateral source motion, and a NGT geometry with T-shaped motion.

View Article and Find Full Text PDF

The reproducibility of handcrafted radiomic features (HRFs) has been reported to be affected by variations in imaging parameters, which significantly affect the generalizability of developed signatures and translation to clinical practice. However, the collective effect of the variations in imaging parameters on the reproducibility of HRFs remains unclear, with no objective measure to assess it in the absence of reproducibility analysis. We assessed these effects of variations in a large number of scenarios and developed the first quantitative score to assess the reproducibility of CT-based HRFs without the need for phantom or reproducibility studies.

View Article and Find Full Text PDF

Purpose: Virtual clinical trials (VCTs) require computer simulations of representative patients and images to evaluate and compare changes in performance of imaging technologies. The simulated images are usually interpreted by model observers whose performance depends upon the selection of imaging cases used in training evaluation models. This work proposes an efficient method to simulate and calibrate soft tissue lesions, which matches the detectability threshold of virtual and human readings.

View Article and Find Full Text PDF

Virtual clinical trials (VCTs) have been used widely to evaluate digital breast tomosynthesis (DBT) systems. VCTs require realistic simulations of the breast anatomy (phantoms) to characterize lesions and to estimate risk of masking cancers. This study introduces the use of Perlin-based phantoms to optimize the acquisition geometry of a novel DBT prototype.

View Article and Find Full Text PDF

A next generation tomosynthesis (NGT) prototype has been developed to investigate alternative scanning geometries for digital breast tomosynthesis (DBT). The NGT system uses a 2D plane as an address space for the x-ray source to define an acquisition geometry. In previous work, tests of physics have been used as objective metrics to evaluate image quality for NGT.

View Article and Find Full Text PDF

We have constructed a prototype next-generation tomosynthesis (NGT) system that supports a non-isocentric acquisition geometry for digital breast tomosynthesis (DBT). In this geometry, the detector gradually descends in the superior-to-inferior direction. The aim of this work is to demonstrate that this geometry offers isotropic super-resolution (SR), unlike clinical DBT systems which are characterized by anisotropies in SR.

View Article and Find Full Text PDF