98%
921
2 minutes
20
This paper introduces a video dataset for semantic segmentation of road potholes. This dataset contains 619 high-resolution videos captured in January 2023, covering locations in eight villages within the Hulu Sungai Tengah regency of South Kalimantan, Indonesia. The dataset is divided into three main folders, namely train, val, and test. The train, val, and test folders contain 372 videos for training, 124 videos for validation, and 123 videos for testing, respectively. Each of these main folders has two subfolders, ``RGB'' for the video in the RGB format and ``mask'' for the ground truth segmentation. These videos are precisely two seconds long, containing 48 frames each, and all are in MP4 format. The dataset offers remarkable flexibility, accommodating various research needs, from full-video segmentation to frame extraction. It enables researchers to create ground truth annotations and change the combination of videos in the folders according to their needs. This resource is an asset for researchers, engineers, policymakers, and anyone interested in advancing algorithms for pothole detection and analysis. This dataset allows for benchmarking semantic segmentation algorithms, conducting comparative studies on pothole detection methods, and exploring innovative approaches, offering valuable contributions to the computer vision community.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867608 | PMC |
http://dx.doi.org/10.1016/j.dib.2024.110131 | DOI Listing |
IEEE Trans Pattern Anal Mach Intell
September 2025
Camouflaged Object Segmentation (COS) faces significant challenges due to the scarcity of annotated data, where meticulous pixel-level annotation is both labor-intensive and costly, primarily due to the intricate object-background boundaries. Addressing the core question, "Can COS be effectively achieved in a zero-shot manner without manual annotations for any camouflaged object?", we propose an affirmative solution. We analyze the learned attention patterns for camouflaged objects and introduce a robust zero-shot COS framework.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2025
In industrial scenarios, semantic segmentation of surface defects is vital for identifying, localizing, and delineating defects. However, new defect types constantly emerge with product iterations or process updates. Existing defect segmentation models lack incremental learning capabilities, and direct fine-tuning (FT) often leads to catastrophic forgetting.
View Article and Find Full Text PDFJ Korean Med Sci
September 2025
Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Korea.
Background: With the increasing incidence of skin cancer, the workload for pathologists has surged. The diagnosis of skin samples, especially for complex lesions such as malignant melanomas and melanocytic lesions, has shown higher diagnostic variability compared to other organ samples. Consequently, artificial intelligence (AI)-based diagnostic assistance programs are increasingly needed to support dermatopathologists in achieving more consistent diagnoses.
View Article and Find Full Text PDFFront Plant Sci
September 2025
College of Big Data, Yunnan Agricultural University, Kunming, China.
Introduction: Accurate identification of cherry maturity and precise detection of harvestable cherry contours are essential for the development of cherry-picking robots. However, occlusion, lighting variation, and blurriness in natural orchard environments present significant challenges for real-time semantic segmentation.
Methods: To address these issues, we propose a machine vision approach based on the PIDNet real-time semantic segmentation framework.
Med Biol Eng Comput
September 2025
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China.
Surgical instrument segmentation plays an important role in robotic autonomous surgical navigation systems as it can accurately locate surgical instruments and estimate their posture, which helps surgeons understand the position and orientation of the instruments. However, there are still some problems affecting segmentation accuracy, like insufficient attention to the edges and center of surgical instruments, insufficient usage of low-level feature details, etc. To address these issues, a lightweight network for surgical instrument segmentation in gastrointestinal (GI) endoscopy (GESur_Net) is proposed.
View Article and Find Full Text PDF