A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Large-Scale Dermatopathology Dataset for Lesion Segmentation: Model Development and Analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: With the increasing incidence of skin cancer, the workload for pathologists has surged. The diagnosis of skin samples, especially for complex lesions such as malignant melanomas and melanocytic lesions, has shown higher diagnostic variability compared to other organ samples. Consequently, artificial intelligence (AI)-based diagnostic assistance programs are increasingly needed to support dermatopathologists in achieving more consistent diagnoses. However, large-scale skin pathology image datasets for AI learning are often insufficient or limited to specific diseases. This study aimed to build and assess a large-scale dermatopathology image dataset for an AI model.

Methods: We trained and evaluated a lesion segmentation model based on this dataset, which consisted of over 34,376 histopathology slide images collected from four institutions, including normal skin and six types of common skin lesion: epidermal cysts, seborrheic keratosis, Bowen disease/squamous cell carcinoma, basal cell carcinoma, melanocytic nevus, and malignant melanoma. Each image was accompanied by labeled data consisting of lesion area annotations and clinical information. To ensure the high quality and accuracy of the dataset, we employed data quality management methods, including syntactic accuracy, semantic accuracy, statistical diversity, and validity evaluation.

Results: The results of the dataset quality assessment confirmed high quality, with syntactic accuracy and semantic accuracy at 0.99 and 0.95, respectively. Statistical diversity was verified to follow a natural distribution. The validity evaluation verified the strong performance of the segmentation model for each group of data, with a Dice score ranging from 80% to 91%.

Conclusion: The results demonstrated that our constructed dataset provides a well-suited resource for deep learning training, offering a large-scale multi-institutional dermatopathology dataset that can drive advancements in AI-driven dermatopathology diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.3346/jkms.2025.40.e220DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418205PMC

Publication Analysis

Top Keywords

segmentation model
12
large-scale dermatopathology
8
dermatopathology dataset
8
lesion segmentation
8
cell carcinoma
8
high quality
8
syntactic accuracy
8
accuracy semantic
8
semantic accuracy
8
statistical diversity
8

Similar Publications