Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We here demonstrate that SERTAD1 is an adaptor protein responsible for the regulation of lysine 63 (K63)-linked NLRP3 polyubiquitination by the Cullin1 E3 ubiquitin ligase upon inflammasome activation. SERTAD1 specifically binds to NLRP3 but not to other inflammasome sensors. This endogenous interaction increases after inflammasome activation, interfering with the interaction between NLRP3 and Cullin1. Interleukin (IL)-1β and IL-18 secretion, as well as the cleavage of gasdermin D, are decreased in SERTAD1 knockout bone-marrow-derived macrophages, together with reduced formation of the NLRP3 inflammasome complex. Additionally, SERTAD1-deficient mice show attenuated severity of monosodium-uric-acid-induced peritonitis and experimental autoimmune encephalomyelitis. Analysis of public datasets indicates that expression of SERTAD1 mRNA is significantly increased in the patients of autoimmune diseases. Thus, our findings uncover a function of SERTAD1 that specifically reduces Cullin1-mediated NLRP3 polyubiquitination via direct binding to NLRP3, eventually acting as a crucial factor to regulate the initiation of NLRP3-mediated inflammasome activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.113752DOI Listing

Publication Analysis

Top Keywords

inflammasome activation
16
nlrp3 polyubiquitination
12
nlrp3-mediated inflammasome
8
nlrp3 inflammasome
8
nlrp3
7
sertad1
6
inflammasome
6
sertad1 initiates
4
initiates nlrp3-mediated
4
activation
4

Similar Publications

Pyroptosis is a lytic and pro-inflammatory regulated cell death pathway mediated by pores formed by the oligomerization of gasdermin proteins on cellular membranes. Different pro-inflammatory molecules such as interleukin-18 are released from these pores, promoting inflammation. Pyroptotic cell death has been implicated in many pathological conditions, including cancer and liver diseases.

View Article and Find Full Text PDF

[Avitinib suppresses NLRP3 inflammasome activation and ameliorates septic shock in mice].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu 233030, China.

Objectives: To investigate the effect of avitinib for suppressing NLRP3 inflammasome activation and alleviating septic shock and explore the underlying mechanism.

Methods: Mouse bone marrow-derived macrophages (BMDM), human monocytic leukemia cell line THP-1, and peripheral blood mononuclear cells (PBMC) isolated from healthy volunteers were pre-treated with avitinib, followed by activation of the canonical NLRP3 inflammasome using agonists including nigericin, monosodium urate (MSU) crystals, or adenosine triphosphate (ATP). Non-canonical NLRP3 inflammasome activation was induced intracellular transfection of lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Objectives: To investigate the therapeutic mechanism of 2,6-dimethoxy-1,4-benzoquinone (DMQ) for alleviating dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice.

Methods: Eighteen male C57BL/6J mice were equally randomized into control group, DSS group and DMQ treatment group. In DSS and DMQ groups, the mice were treated with DSS in drinking water to induce UC, and received intraperitoneal injections of sterile PBS or DMQ (20 mg/kg) during modeling.

View Article and Find Full Text PDF

Astragaloside IV regulates the IRF7/NLRP3 axis to inhibit neutrophil extracellular trap formation and alleviate coxsackievirus B3-induced myocarditis.

Biochem Biophys Res Commun

August 2025

Intensive Care Unit, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China. Electronic address:

Background: Coxsackievirus B3 (CVB3) infection is a common cause of myocarditis, and the resulting inflammatory response and cellular damage can lead to severe cardiac dysfunction. Astragaloside IV (AS-IV), a natural compound with anti-inflammatory and antiviral properties, has shown potential therapeutic value in various inflammatory and immune-related diseases. Our study aims to explore the potential effects and underlying mechanisms of AS-IV in CVB3-induced viral myocarditis (VMC).

View Article and Find Full Text PDF

SiO NP promotes allergic gastritis induced by degranulation of mouse MC9 cell through AQP4-mediated impairment of SIRT3-TFAM deacetylation and mitochondrial autophagy.

J Hazard Mater

September 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR C

Silicon dioxide nanoparticles (SiO NPs) are a novel material with a wide range of applications whose cumulative effects in the body pose certain health risks. The types of gastric injuries caused by different-sized SiO NPs and their mechanisms, however, remain unclear. Based on this, we established a mouse subchronic exposure model (10 mg/kg/d, 21 consecutive days of tube-feeding) with different SiO NP sizes (50, 300, and 1000 nm) in conjunction with in vitro MC9 and BMMCs models (160 μg/mL exposure for 24 h) to explore the gastric injury mechanisms.

View Article and Find Full Text PDF