Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lignocellulose biomasses (LCB), including spent mushroom substrate (SMS), pose environmental challenges if not properly managed. At the same time, these renewable resources hold immense potential for biofuel and chemicals production. With the mushroom market growth expected to amplify SMS quantities, repurposing or disposal strategies are critical. This study explores the use of SMS for cultivating microbial communities to produce carbohydrate-active enzymes (CAZymes). Addressing a research gap in using anaerobic digesters for enriching microbiomes feeding on SMS, this study investigates microbial diversity and secreted CAZymes under varied temperatures (37 °C, 50 °C, and 70 °C) and substrates (SMS as well as pure carboxymethylcellulose, and xylan). Enriched microbiomes demonstrated temperature-dependent preferences for cellulose, hemicellulose, and lignin degradation, supported by thermal and elemental analyses. Enzyme assays confirmed lignocellulolytic enzyme secretion correlating with substrate degradation trends. Notably, thermogravimetric analysis (TGA), coupled with differential scanning calorimetry (TGA-DSC), emerged as a rapid approach for saccharification potential determination of LCB. Microbiomes isolated at mesophilic temperature secreted thermophilic hemicellulases exhibiting robust stability and superior enzymatic activity compared to commercial enzymes, aligning with biorefinery conditions. PCR-DGGE and metagenomic analyses showcased dynamic shifts in microbiome composition and functional potential based on environmental conditions, impacting CAZyme abundance and diversity. The meta-functional analysis emphasised the role of CAZymes in biomass transformation, indicating microbial strategies for lignocellulose degradation. Temperature and substrate specificity influenced the degradative potential, highlighting the complexity of environmental-microbial interactions. This study demonstrates a temperature-driven microbial selection for lignocellulose degradation, unveiling thermophilic xylanases with industrial promise. Insights gained contribute to optimizing enzyme production and formulating efficient biomass conversion strategies. Understanding microbial consortia responses to temperature and substrate variations elucidates bioconversion dynamics, emphasizing tailored strategies for harnessing their biotechnological potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10816813PMC
http://dx.doi.org/10.3390/ijms25021090DOI Listing

Publication Analysis

Top Keywords

microbial consortia
8
°c °c
8
lignocellulose degradation
8
temperature substrate
8
microbial
6
sms
5
potential
5
lignocellulolytic potential
4
potential microbial
4
consortia isolated
4

Similar Publications

Microbial consortia, involving two or more microorganisms, have been explored for pest management purposes, despite concerns regarding competitive exclusion among entomopathogenic fungi that may undermine synergistic effects. However, the precise molecular mechanisms governing entomopathogen competition in vivo remain inadequately elucidated. Here, we investigate competitive exclusion dynamics between two prominent entomopathogens, Metarhizium robertsii and Beauveria bassiana.

View Article and Find Full Text PDF

Microplastics (MPs) and the plastisphere they form pose substantial ecological risks in aquatic environments and wastewater treatment processes. As a unique niche, the evolution of plastisphere in anaerobic ammonium oxidation (anammox) systems remains poorly understood. This study investigated the physicochemical evolution of polyethylene terephthalate (PET) MPs and microbial succession within the plastisphere during a 30-day incubation with anammox granular sludge.

View Article and Find Full Text PDF

Iron oxide-mediated enhancement of extracellular electron transfer and symbiosis in consortium of electroactive bacteria and microalgae for wastewater treatment.

Water Res

August 2025

College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:

This study explores the role of α-Fe₂O₃ in improving extracellular electron transfer (EET) and symbiotic interactions between electroactive Shewanella oneidensis MR-1, its gene-deficient mutants (ΔmtrC, ΔomcA, and ΔcymA), and microalgae (Chlorella vulgaris). The iron oxide facilitates the efficient transfer of electrons generated by MR-1 to microalgal photosystem via the pathway of CymA-MtrC-OmcA to α-Fe₂O₃. This process enhances the removals of TOC, TN, and NH₄⁺-N in the MR-1 bacterial-algal consortium by 9.

View Article and Find Full Text PDF

Burning rice straw contribute to Atmospheric Pollution, which makes it unsustainable in the long-run, but are still opted by farmers due to faster removal of residue. Lignocellulose Degrading Microorganisms, facilitating sustainable management, may accelerate the breakdown of various crop residues. A study comprised of twenty-one treatments including fungal strains, bacterial strains and microbial consortia.

View Article and Find Full Text PDF

We report the development of a cofactor-free CO fixation platform based on a three-enzyme cascade comprising ferulic acid decarboxylase (AnFDC), phenylalanine ammonia-lyase (AvPAL), and l-amino acid deaminase (PmLAAD). Unlike canonical ATP- or NADPH-dependent CO assimilation pathways, this system uses a prFMN-dependent carboxylation mechanism, enabling efficient CO incorporation under ambient conditions without energy-intensive cofactors. Systematic screening identified AnFDC as the optimal decarboxylase for styrene carboxylation, while AvPAL and PmLAAD were selected for their superior catalytic efficiencies in the cascade.

View Article and Find Full Text PDF