Article Synopsis

  • The study examines microplastic deposition at a Parisian urban site during the spring 2020 lockdown, comparing it to data from spring 2021 when activities were normal.
  • The analysis revealed that overall, microplastic deposition was significantly lower during the lockdown (5.4 microplastics per square meter per day) compared to the normal activity period (29.2 microplastics per square meter per day), although this trend didn't apply to the smallest microplastic size.
  • The research indicates that the decline in human activity during lockdown is likely responsible for the reduced deposition rates, providing valuable insight into how human behavior affects atmospheric microplastics.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Here, microplastic atmospheric deposition data collected at an urban site during the French national lockdown of spring 2020 is compared to deposition data from the same site in a period of normal activity. Bulk atmospheric deposition was collected on the vegetated roof of a suburban campus from the Greater Paris and analysed for microplastics using a micro-FTIR imaging methodology. Significantly lower deposition rates were measured overall during the lockdown period (median 5.4 MP m.d) than in a period of normal activity in spring 2021 (median of 29.2 MP m.d). This difference is however not observed for the smallest microplastic size class. The dominant polymers identified were PP, followed by PE and PS. Precipitation alone could not explain the differences between the two campaigns, and it is suggested that the temporary drop in human activity during lockdown is the primary cause of the reduced deposition rates. This study provides novel insight on the immediate impact of human activities on atmospheric microplastics, thus enhancing the global understanding on this topic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.123354DOI Listing

Publication Analysis

Top Keywords

atmospheric deposition
12
deposition rates
12
bulk atmospheric
8
deposition data
8
period normal
8
normal activity
8
deposition
6
covid lockdown
4
lockdown impacted
4
impacted microplastic
4

Similar Publications

Multi-component tree biomass approach to estimate litterfall Hg deposition in a warm-temperate coniferous forest in southern Europe.

Environ Res

September 2025

Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias,32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, 32004 Ourense, Spain. Electronic address: edjuanca@uv

Terrestrial ecosystems are a key component in the biogeochemical cycle of Hg. About 50% of atmospheric Hg is captured in the system because of the ability of vegetation to retain and subsequently transfer it to the soil surface through litterfall. In a stand dominated by Scots pine (Pinus sylvestris), the widest spatially distributed tree species in the northern hemisphere and the second worldwide, this two-year study evaluated monthly the litterfall Hg deposition fluxes (FHg) through all litterfall fractions involved (needles, twigs, bark, miscellaneous, and male inflorescences).

View Article and Find Full Text PDF

Wafer-Scale Demonstration of BEOL-Compatible Ambipolar MoS Devices Enabled by Plasma-Enhanced Atomic Layer Deposition.

ACS Appl Mater Interfaces

September 2025

Nanoelectronics Graphene and 2D Materials Laboratory, CITIC-UGR, Department of Electronics, University of Granada, Granada 18014, Spain.

The relentless scaling of semiconductor technology demands materials beyond silicon to sustain performance improvements. Transition metal dichalcogenides (TMDs), particularly MoS, offer excellent electronic properties; however, achieving scalable and CMOS-compatible fabrication remains a critical challenge. Here, we demonstrate a scalable and BEOL-compatible approach for the direct wafer-scale growth of MoS devices using plasma-enhanced atomic layer deposition (PE-ALD) at temperatures below 450 °C, fully compliant with CMOS thermal budgets.

View Article and Find Full Text PDF

The direct deposition of piezoelectric ceramic thin films onto metal foils has become a significant challenge due to the increasing demand for embedded decoupling capacitors, nanogenerators, and flexible piezo-sensors. However, traditional thermal sintering (TS) methods present several issues for metal foils, including alterations in mechanical properties, the formation of wrinkles, and the need for precise control over the sintering atmosphere to prevent oxidation. In this study, we successfully crystallized BaTiO on a Ni foil under atmospheric conditions, mitigating thermal damage to the foil through a hybrid-solution-incorporated photoassisted chemical solution deposition (HS-PCSD) method.

View Article and Find Full Text PDF

Ammonia (NH) has attracted increasing attention for its reduction potential in fine particulate matter mitigation, yet current NH emission inventories involve substantial uncertainties. Previous bottom-up NH inventories are usually constrained by satellite observations, deposition measurements, or isotopic analysis and still lack careful validation at fine regional scales. This study develops a novel diagnostic framework combining multisite NH observations across the Pearl River Delta (PRD) with the Community Multiscale Air Quality (CMAQ) model simulations and machine learning techniques to evaluate and refine a regional NH inventory.

View Article and Find Full Text PDF

An integrated framework is introduced and applied to assess the health impact of airborne pollution with greater physiological relevance, moving beyond conventional exposure metrics. Measured particle number size distribution data was integrated with a regional respiratory tract deposition fractions to estimate total and alveolar deposited particle surface area concentrations. Land use regression modeling, combined with randomized commuting patterns, enabled the evaluation of city-specific alveolar surface area deposition doses, providing new insight into localized average exposure and its implications for public health.

View Article and Find Full Text PDF