98%
921
2 minutes
20
With the aim to find new polysaccharides of rheological interest with innovated properties, rhamnofucans produced as exopolysaccharides (EPS) in a photobioreactor (PBR) and an airlift bioreactor (ABR) by the marine microalgae Glossomastix sp. RCC3707 and RCC3688 were fully studied. Chemical characterizations have been conducted (UHPLC - MS HR). Analyses by size-exclusion chromatography (SEC) coupled online with a multiangle light scattering detector (MALS) and a differential refractive index detector showed the presence of large structures with molar masses higher than 10 g.mol. The rheological studies of these EPS solutions, conducted at different concentrations and salinities, have evidenced interesting and rare behavior characteristic of weak and fragile hydrogels i.e. gel behavior with very low elastic moduli (between 10 and 10 Pa) and yield stresses (between 10 and 2 Pa) according to the EPS source, concentration, and salinity. These results were confirmed by diffusing wave spectroscopy. Finally, as one of potential application, solutions of EPS from Glossomastix sp. have evidenced very good properties as anti-settling stabilizers, using microcrystalline cellulose particles as model, studied by multiple light scattering (MLS) with utilization in cosmetic or food industry. Compared to alginate solution with same viscosity for which sedimentation is observed over few hours, microalgae EPS leads to a stable suspension over few days.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761178 | PMC |
http://dx.doi.org/10.1080/21655979.2023.2296257 | DOI Listing |
J Hazard Mater
September 2025
College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:
Nanoplastics (NPs) in marine ecosystems have garnered increasing attention for their interference with the physiological processes of aquatic organisms. An in-depth examination of the toxicological responses of Nannochloropsis oceanica, a species vital to marine ecosystems, is essential due to the crucial role of lipid metabolism in carbon sequestration and energy allocation in microalgae. This study analyzed the toxicological responses of N.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266071, PR China.
High-ammonium wastewater can be simultaneously remediated and valorized through phototrophic cultivation of stress-resilient microalgae. This study evaluated the growth performance of 16 microalgae strains (specific growth rate μ = 0.108-0.
View Article and Find Full Text PDFBiochimie
September 2025
Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, F-33140 France. Electronic address:
Marine microalgae are the primary producers of important lipids in oceanic ecosystems. In particular, they sustain the food web with omega-3 very-long-chain polyunsaturated fatty acids (n-3 PUFAs), which play a protective role against various human metabolic disorders and are thus considered highly beneficial to health. Ostreococcus tauri is a marine pico-eukaryote that contains high levels of several n-3 PUFAs, including docosahexaenoic acid (22:6n3; DHA), octadecapentaenoic acid (18:5n3, OPA), and hexadecatetraenoic acid (16:4n3), each with a distinct distribution.
View Article and Find Full Text PDFISME Commun
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China.
Eukaryotic harmful and toxic microalgae, along with their derived toxins, pose significant threats to seafood safety, human health, and marine ecosystems. Here, we developed a novel full-length 18S rRNA database for harmful and toxic microalgae and combined metabarcoding with toxin analyses to investigate the ecological patterns of phytoplankton communities and the underlying mechanism of associated toxic microalgae risks. We identified 79 harmful and toxic species in Hong Kong's coastal waters, with dinoflagellates and diatoms representing the majority of toxic and harmful taxa, respectively.
View Article and Find Full Text PDFPLoS One
September 2025
National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, North Carolina, United States of America.
Paralytic shellfish poisoning (PSP) is a pervasive human health concern associated with subsistence, recreationally and commercially harvested Alaskan shellfish. PSP is caused by saxitoxins (STX), a family of structurally similar neurotoxins produced by the marine microalgae Alexandrium catenella (formerly A. fundyense).
View Article and Find Full Text PDF