Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To explore the molecular mechanisms of intestinal injury and treatment by analyzing changes in cellular heterogeneity and composition in rat ileal tissue during injury and treatment processes.

Methods: We constructed a rat model of SAP and evaluated treatment with an injected of monoacylglycerol lipase (MAGL) inhibitor (JZL184) solution using three experimental groups: healthy male Sprague-Dawley (SD) rats injected with vehicle (CON), male SD SAP model rats injected with vehicle (SAP), and male SAP rats injected with JZL184. We obtained and prepared a single-cell suspension of ileal tissue of each rat for single-cell transcriptome sequencing.

Results: This project classified changes in cellular heterogeneity and composition in rat ileal tissue during SAP-induced intestinal injury and MAGL treatment. We found that the number of fibroblast clusters was decreased in the SAP group relative to the CON group, and increased after JZL184 treatment. Further analysis of differences in gene expression between cell clusters in each group reveals that fibroblasts had the greatest number of differentially expressed genes. Most notably, expression of genes involved in communication between cells was found to vary during SAP-induced intestinal injury and JZL184 treatment. Among these changes, the degree of difference in expression of genes involved in communication between fibroblasts and other cells was the highest, indicating that fibroblasts in rat ileal tissue affect intestinal injury and repair through cell-to-cell communication. In addition, our results reveal that differentially expressed RNA-binding proteins in fibroblasts may affect their functions in intestinal injury and treatment by affecting the expression of genes regulating communication between cells.

Conclusion: These findings emphasize the importance of understanding the interactions between fibroblasts and other cells in the context of intestinal injury, providing valuable insights for further exploring molecular mechanisms and insight for discovering new treatment targets and strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725699PMC
http://dx.doi.org/10.2147/JIR.S436511DOI Listing

Publication Analysis

Top Keywords

intestinal injury
28
ileal tissue
16
injury treatment
12
rat ileal
12
rats injected
12
expression genes
12
injury
8
injury repair
8
molecular mechanisms
8
treatment
8

Similar Publications

Rifaximin reduces gut-derived inflammation in severe acute pancreatitis: an experimental animal model and randomized controlled trial.

Microbiol Spectr

September 2025

Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Unlabelled: Severe acute pancreatitis (SAP) is characterized by systemic inflammation and intestinal barrier dysfunction and is often associated with gut microbiota dysbiosis. Rifaximin, a gut-specific non-absorbable antibiotic, is known to modulate the gut microbiota. Here, we investigated rifaximin's effects and mechanisms in SAP using murine models and a single-center, open-label, randomized controlled trial (Chinese Clinical Trial Registry: ChiCTR2100049794).

View Article and Find Full Text PDF

Acute lung injury (ALI) is a major contributor to the high morbidity and mortality associated with intestinal ischemia-reperfusion (II/R). Despite its severity, current clinical management of ALI remains limited to supportive care without addressing the cause of the disease, underscoring the urgent need to investigate the underlying mechanism and develop targeted therapies. In this study, we employed both in vitro and in vivo models to explore ALI in the setting of II/R.

View Article and Find Full Text PDF

Introduction: Sulforaphane (SFN) is recognized for its anti-inflammatory properties; however, the underlying molecular mechanisms remain unclear. In this study, we explored the effect of SFN on subarachnoid hemorrhage (SAH) and the potential mechanisms.

Methods: Sprague-Dawley (SD) rats were divided into three groups (n = 12): Sham + vehicle group (Sham + V), SAH + vehicle group (SAH + V), and SAH + SFN group (SAH + S).

View Article and Find Full Text PDF

Introduction: Hepatic sinusoidal obstruction syndrome (HSOS) is a vascular liver disease with a high mortality rate, and treatment methods are limited. Rivaroxaban is an oral anticoagulant. This study aimed to investigate the pharmacological effect and potential mechanism of rivaroxaban on HSOS.

View Article and Find Full Text PDF

Dynamic male mouse gut microbiota signature linked to improved wound healing of a novel salecan hydrogel dressing.

Front Bioeng Biotechnol

August 2025

Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China.

Salecan-based hydrogel (thereafter called Sal-hydrogel) dressings and gut microbiota have been associated with enhanced wound healing. However, the relationship between these two factors remains unclear. This study investigated the dynamic characteristics of the intestinal microbiota in relation to the Sal-hydrogel dressings and their role in promoting wound healing.

View Article and Find Full Text PDF