98%
921
2 minutes
20
The neurotransmitter dopamine (DA) is associated with many physiological and pathological processes, so the importance of low detection limits and high sensitivity analysis cannot be overstated, especially for early disease detection. Here, 2 M NaOH aqueous solution is used to precipitate metal ions in an ethanol solution containing carbon black (CB), and then nanocomposite catalysts (NaTi11.5MoVO/C-40 (40 denoted as 40 mg CB)) were obtained by calcining the precipitation. When used for DA detection, NaVO acts as the main active site for electrochemical oxidation of DA and NaTi11.5MoO plays a role in facilitating the binding of DA to the active site and stabilizing the active site. The NaTi11.5MoVO/C-40 electrochemical biosensor has a limit of detection (LOD) of 0.003 μM with a linear range of 0.005-51.665 μM for DA. This sensor can be used to sensitively identify the concentration of DA in human blood and urine. Catalysts containing varying amounts of CB exhibit diverse electron transfer rates, and surprisingly, we found that the appropriate electron transfer rate is optimal for the detection of low concentrations of DA. Because the performance of the electrochemical biosensors is affected by both the activity of the catalysts and the accuracy of the electrochemical testing instrumentation. To better explain this phenomenon, we propose the concept of resolution (Rn) and present the formula to derive it, offering a new approach to evaluating the performance of electrochemical biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.125540 | DOI Listing |
Pestic Biochem Physiol
November 2025
Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapı, 06110 Ankara, Türkiye. Electronic address:
Acequinocyl and bifenazate are widely used acaricides that inhibit mitochondrial electron transport at complex III, due to their high efficacy and low side effects. However, resistance development has been reported in Tetranychus urticae populations worldwide, likely as a result of frequent applications. This study assessed the phenotypic resistance levels of T.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China. Electronic address:
Background: Daminozide is a commonly utilized plant growth regulator. Both daminozide and its hydrolysis product, 1,1-dimethyl hydrazine ((CH)NNH), exhibit carcinogenic and teratogenic toxicity. Accurate detection of daminozide in food is of great significance to human health.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Shanxi Center of Technology Innovation for Advanced Power Battery Material, School of Chemistry and Chemical Engineering, Shanxi Normal University, Taiyuan 030032, China. Electronic address:
Against the backdrop of global carbon neutrality target driving the transformation of energy structure, alcohol fuel cells (AFCs) show great application potential; However, the sluggish kinetics of their anodic alcohol oxidation reaction hinders the commercialization of AFCs. Metallene is a novel 2D material with potential application prospect in the field of electrocatalysis. In this paper, PdMoW trimetallene has been successfully produced by a one-pot wet-chemical method, which displays a unique two-dimensional curved ultrathin graphene structure.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Lithium‑sulfur batteries (LSBs) are promising alternatives to lithium-ion batteries due to their high energy density and low cost. However, issues like the lithium polysulfide (LiPSs) shuttle effect, lithium dendrite growth, and flammable electrolytes hinder commercialization. In this study, we have developed a metal-based catalyst, bismuth oxychloride (BiOCl) nanoflowers coated with conductive polypyrrole (Bi@Ppy), via hydrothermal synthesis.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping, 102249, China. Electronic address:
Carbon-based catalysts with free-standing structure are essential for rechargeable zinc-air battery as electrodes, which can avoid the side effects brought by organic binder. However, the current preparation methods still can be improved for faster preparation process and morphology control. In this study, we reported a fabrication strategy of self-standing carbon catalyst loaded with CoFe nanoparticles and carbon nanotube as air electrodes for liquid rechargeable zinc-air battery.
View Article and Find Full Text PDF