Heliyon
November 2024
Chronic otitis media with effusion (COME) is a common cause of hearing loss in children and adults. Laryngopharyngeal reflux (LPR) is often overlooked in the clinical management of COME complicated by LPR. This study aimed to investigate the presence and concentration of trypsin and pepsin in the middle ear effusion (MEE), as well as the recurrence rate of otitis media with effusion (OME) in COME patients with trypsin-/pepsin-positive MEE after acid-suppressive treatment (AST).
View Article and Find Full Text PDFDoping specific active sites and accelerating the decisive step of glucose catalysis to construct highly active glucose sensing electrochemical catalysts remains a major challenge for glucose sensing. Herein, we report the detailed design of Cu-Co dual active site N-doped carbon nanotube (CuCo-NCNTs) obtained by electrodeposition modification, programmed warming and calcination for electrochemical glucose detection. In the CuCo-NCNTs material system, Cu serves as the main active site for glucose sensing.
View Article and Find Full Text PDFThe neurotransmitter dopamine (DA) is associated with many physiological and pathological processes, so the importance of low detection limits and high sensitivity analysis cannot be overstated, especially for early disease detection. Here, 2 M NaOH aqueous solution is used to precipitate metal ions in an ethanol solution containing carbon black (CB), and then nanocomposite catalysts (NaTi11.5MoVO/C-40 (40 denoted as 40 mg CB)) were obtained by calcining the precipitation.
View Article and Find Full Text PDFExploring the factors affecting the electrochemical catalytic signal of an organic-metal material sensor and analyzing the decisive steps of the glucose oxidation behavior are challenging problems. Here, we designed a copper-cobalt-based organic backbone with excellent sensing properties based on the nanostructure of "ultramicroelectrodes", and explored the role of different hydroxyl adsorption capacities in the sensing process of glucose oxidation. Dimethylimidazole was used as a starting substrate, and then copper and cobalt ions were introduced by hydrothermal treatment to prepare a copper-cobalt-based organic backbone (Co/Cu-MOF) with good electrochemical glucose sensing ability.
View Article and Find Full Text PDFA composite material of graphene (G) and polydopamine (PDA) on a copper (Cu) substrate (G/PDA@Cu) was fabricated successfully by sequential immersion deposition in a dopamine solution and an aqueous graphene oxide suspension before annealing. Optimum preparation conditions were explored by the orthogonal experimental method. The morphology and chemical composition of G/PDA@Cu were studied systematically by a series of characterization techniques.
View Article and Find Full Text PDFPolymers (Basel)
August 2020
In diluted solid solution using poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and polymethyl methacrylate (PMMA) or polystyrene (PS), both aggregated and extended conformations could be formed according to the weight ratio. Aggregated conformation in as-cast MEH-PPV/PMMA film presented a J-aggregate-like photoluminescence (PL) emission. After annealing at 160 °C, its PL showed characteristics of both J- and H-aggregates at the same time; however, extended conformation showed an oligomer-like emission, which was not sensitive to either measurement temperature or annealing temperature.
View Article and Find Full Text PDFThe oxidase-like activity of nanoceria is low. This limits its practical applications. It is demonstrated here that pyrophosphate ion (PPi) can improve the oxidase-like activity of nanoceria.
View Article and Find Full Text PDFThe authors have fabricated reduced graphene oxide nanosheets (rGO) supported with FeO nanoparticles and Ag/Au hollow nanoshells. The material was placed on a glassy carbon electrode which is shown to enable highly sensitive determination of As(III) which is first preconcentrated from solution at a potential of -0.35 V (versus Ag/AgCl) for 100 s.
View Article and Find Full Text PDFIn this work, we propose a fluorescence method for the simultaneous detection of glutathione (GSH) and histidine (His) based on the Cu(ii)-thiamine (Cu(ii)-TH) system. It is well established that non-fluorescent thiamine (TH) can be oxidized by Cu(ii) to generate fluorescent thiochrome (TC) under alkaline conditions. The introduction of GSH and His can inhibit the oxidation of TH by Cu(ii) due to the strong affinity between Cu(ii) and GSH or His.
View Article and Find Full Text PDFAlkaline phosphatase (ALP) is a significant biomarker for diagnostics. Simple, selective and sensitive detection of ALP activity is thus of critical importance. In this study, an artful fluorescence assay for ALP is proposed based on adenosine triphosphate (ATP) hydrolysis-triggered disassociation and fluorescence quenching of cerium coordination polymer nanoparticles (CPNs).
View Article and Find Full Text PDFA fluorometric assay is described for sulfide ions determination. It is based on the finding that the oxidation of the non-fluorescent substrate thiamine (TH) by Cu(II) in basic solution to form fluorescent thiochrome is inhibited by sulfide ions. This results in a decrease in fluorescence intensity which is proportional to the concentration of sulfide ions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2016
The effective coupling of optical surface plasmons (SPs) and electron transport in a plasmonic-electronic device is one of the fundamental issues in nanoelectronics and the emerging field of plasmonics, and offer promise in providing a solution to next generation nanocircuits in which all coupling is in the near field. Attempts toward this end, however, are limited because of the integration challenge to compatible nanodevices. To date, direct electrical detection of SP-electron coupling from metallic nanostructures alone are not reported, and thus it remains a great experimental challenge.
View Article and Find Full Text PDFGold nanorods (GNRs) with suitable aspect ratios have strong localized surface plasmon resonance (LSPR) absorption and scattering in the 650-900 nm near-infrared region, which make them attractive for in vitro or in vivo imaging and photothermal cancer therapy. However, they often suffer from cytotoxicity and instability for practical applications, and therefore need further surface modification to solve these issues. In this study, GNRs coated with biocompatible polyaniline (PANI) were used as a stable and highly efficient photothermal agent for cancer cell ablation.
View Article and Find Full Text PDFSearching for novel hybrid electrocatalysts with high activity and strong durability for a direct electrochemical hydrogen evolution reaction (HER) is extremely desirable but still remains a significant challenge. Herein, we report a novel solid carbon cloth-supported hybrid nano-bio electrocatalyst, decorated with Ag nanoparticles and proton-pumping bacteriorhodopsin (bR) (Ag/bR/CP) that were prepared by in situ electroless deposition and vesicle fusion technology, respectively. When applied as a hydrogen evolution cathode, the Ag/bR/CP shows a low onset overpotential of 63 mV, good durability (no detectable change in its catalytic activity for up to 1000 cycles in alkaline media), and enhanced HER performance under 550 nm irradiation, attributed to the activation of Ag and synergistic effects following light absorption, demonstrated by photoelectrochemical measurements.
View Article and Find Full Text PDFEffective control over the morphology and size of Pd/Pt nanoparticles is currently of immense interest because their electronic, optical, and catalytic properties are superior to pure platinum nanoparticles. However, control over the nanoparticle shape is still challenging. Therefore, a novel design and synthetic route needs to be developed to obtain a high-performance catalyst.
View Article and Find Full Text PDFUltrasensitive visual detection of hydrazine hydrate using a Au nanoparticles-based colorimetric sensing system (ANCSS) is reported for the first time, which is based on the hydrogen bonding recognition and the modality change of hydrogen bonding from "linear" (simple hydrogen bond interactions) to "nonlinear" (a complicated hydrogen bond network) between as-modified Au nanoparticles (Au NPs).
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2010
The adsorption of antimony acetate (Sb(OAc)(3)) on sodium montmorillonite (Na-MMT) was studied at five different initial concentrations, and data from the adsorption isotherm were modeled using the Langmuir, Freundlich and D-R isotherm equations. The kinetics of adsorption was also discussed using three kinetic models: the pseudo-first-order, the pseudo-second-order and the intraparticle diffusion model. The rate constants of pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetics, and the amount of Sb(OAc)(3) adsorbed at equilibrium were determined.
View Article and Find Full Text PDF