98%
921
2 minutes
20
Alkaline phosphatase (ALP) is a significant biomarker for diagnostics. Simple, selective and sensitive detection of ALP activity is thus of critical importance. In this study, an artful fluorescence assay for ALP is proposed based on adenosine triphosphate (ATP) hydrolysis-triggered disassociation and fluorescence quenching of cerium coordination polymer nanoparticles (CPNs). ATP, a recognized natural substrate of phosphatase, can serve as a superb "antenna" to sensitize the luminescence of Ce3+ with the aid of tris(hydroxymethyl) aminomethane (Tris), forming Ce3+-ATP-Tris CPNs. In the presence of ALP, ATP will be catalytically converted into adenosine and inorganic orthophosphate, however neither of them can sensitize Ce3+ in alkaline media. As a result, the obtained CPNs are disassociated, inducing the quenching of the fluorescence. On this basis, a straightforward fluorescence assay for ALP activity is rationally developed. The fluorescence quenching efficiency shows a linear relationship for ALP within the activity range from 0.1 to 10 mU mL-1 with a detection limit of 0.09 mU mL-1 under the optimal experimental conditions. Moreover, this facile yet effective fluorescence method featured simplicity, cost-effectiveness, high sensitivity and high selectivity and can be successfully utilized for the quantitative detection of ALP in human serum samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8an00787j | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Pathology, First Clinical College, Changzhi Medical College, Changzhi 046000.
Objectives: Acute lung injury (ALI) is an acute respiratory failure syndrome characterized by impaired gas exchange. Due to the lack of effective targeted drugs, it is associated with high mortality and poor prognosis. (TW) has demonstrated anti-inflammatory activity in the treatment of various diseases.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
Adenosine triphosphate (ATP) is a critical biomolecule in cellular energy metabolism, with abnormal levels in the bloodstream linked to pathological conditions such as ischemia, cancer, and inflammatory disorders. Accurate and real-time detection of ATP is essential for early diagnosis and disease monitoring. However, conventional biochemical assays and other techniques suffer from limitations, including invasive sample collection, time-consuming procedures, and the inability to provide dynamic, monitoring.
View Article and Find Full Text PDFAnal Methods
September 2025
Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China.
Salicylic acid (SA) is a critical phytohormone involved in plant growth, development, and defense responses, making its precise quantification essential for both agricultural management and environmental monitoring. Here, we report a novel label-free near-infrared aptasensor (NIRApt) for the rapid and sensitive detection of SA, utilizing a rationally selected triphenylmethane (TPM) dye. Through systematic screening, ethyl violet (EV) was identified as the optimal fluorophore, showing pronounced fluorescence enhancement upon binding to a SA-specific aptamer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China.
Self-assembled DNA nanostructures have been popularly used to develop DNA-based electrochemical sensors by exploiting the nanoscale positioning capability of DNA origami. However, the impact of the electric field on the structural stability of the DNA origami framework and the activity of carried DNA probes remains to be explored. Herein, we employ DNA origami as structural frameworks for reversible DNA hybridization, and develop a single-molecule fluorescence imaging method to quantify electric field effects on DNA conformation and hybridization properties at the single-molecule level.
View Article and Find Full Text PDFMol Plant Pathol
September 2025
State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
Superinfection exclusion (SIE) is a finely tuned virus-virus interaction mechanism closely linked to the viral infection cycle. However, the mechanistic basis of SIE remains incompletely understood in plant viruses, particularly among negative-sense, single-stranded RNA viruses. In this study, we first describe the development of an efficient reverse genetics system for the plant nucleorhabdovirus Physostegia chlorotic mottle virus (PhCMoV) by codon optimisation of the large polymerase coding sequence.
View Article and Find Full Text PDF