Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Choledochojejunostomy has been common surgical treatment of biliary tract disease. Scar formation at anastomotic often results in postoperative complications associated with bleak post-operative recovery, in which local inflammation may be a potential target to modulate local scar formation. This study investigated the effect of regulatory B10 cells on local scar formation through interleukin-10 signal pathway following Roux-en-Y choledochojejunostomy (RCJS) in a novel rat model. Sprague-Dawley (SD) rats with RCJS were randomly divided into blank group, experimental group, IL-10 blocking group, control group, and received different interventions and duration. Injected through dorsal vein of penis, rats in different groups were treated respectively according to scheme. These interventions were performed during surgery, on 1st day, and 2nd day after surgery. Related indexes, including blood examination, specimen tissue of anastomotic detection, were recorded and compared in different interventional groups. Rats in experimental groups had more rapid recovery in liver function and inflammatory index, and higher in IL-10 level. Flow cytometry analysis showed that rats in experimental groups had highest content of B10 cells and lowest content of CD4CD25 T cells in peripheral blood. Wider anastomotic by macroscopical observation, and slighter proliferation of collagen fiber and smooth muscle fiber, lower α-SMA and TGF-β1 levels by pathological staining were detected in experimental groups. Higher expression of the IL-10 gene and lower expression of TGF-β1 at anastomotic were detected in experimental groups. B10 cells may relieve local inflammation of anastomotic following RCJS in rats through IL-10-dependent modulatory effect, and improve local scar formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.111309DOI Listing

Publication Analysis

Top Keywords

scar formation
20
b10 cells
16
local scar
16
experimental groups
16
regulatory b10
8
cells local
8
roux-en-y choledochojejunostomy
8
novel rat
8
rat model
8
local inflammation
8

Similar Publications

 Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.

View Article and Find Full Text PDF

The ferroptosis-associated gene TIMP1 facilitates skin scar formation through the interaction with CST3 in fibroblasts.

Int Immunopharmacol

September 2025

Medical Center of Burn Plastic and Wound Repair, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China. Electronic address:

Skin scar formation is a critical pathological process in wound healing, but its underlying regulatory mechanisms remain incompletely elucidated. By integrating analyses of Bulk-RNA seq and single-cell RNA sequencing (scRNA-seq) data, we identified that ferroptosis-related biological processes potentially play a key role in skin scar formation. Further mechanistic studies demonstrated that in human dermal fibroblast cells, the ferroptosis regulator TIMP metallopeptidase inhibitor 1 (TIMP1) significantly promotes fibroblast differentiation toward a mature phenotype through interactions with cystatin C (CST3), characterized by upregulated expression of myofibroblast differentiation markers such as α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF), along with enhanced cell proliferation and migration abilities.

View Article and Find Full Text PDF

5-Aminolevulinic acid-mediated photodynamic therapy improves scar healing of laryngeal wounds in rats.

Lasers Med Sci

September 2025

Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China.

To evaluated the efficacy of photodynamic therapy (PDT) in improving laryngeal mucosal wound scar healing in vivo and investigated its underlying mechanisms. Laryngeal mucosal wounds were induced in Sprague-Dawley rats. Two weeks post-injury, PDT was administered via intraperitoneal injection of 100 mg/kg 5-aminolevulinic acid (5-ALA) and 635-nm red laser irradiation at varying energy doses (15, 30, and 45 J/cm²).

View Article and Find Full Text PDF

Background: Reflectance confocal microscopy (RCM) criteria for in vivo diagnosis of unperturbed basal cell carcinoma (BCC) lesions have been validated and studies have reported high diagnostic sensitivity. However, a paucity of data remains regarding preservation or changes in RCM features after biopsy or treatment.

Objective: Prospectively image biopsy proven superficial BCC (sBCC) with RCM at baseline and 12 weeks post-treatment to determine clearance and identify any associated RCM features.

View Article and Find Full Text PDF

In adult mammals and other highly developed animals, incomplete wound healing, scar formation, and fibrosis occur. No treatment for complete tissue regeneration is currently available. However, in mice, at up to 13 days of gestation, early embryonic wounds regenerate without visible scarring.

View Article and Find Full Text PDF